
By Dean Lofts | GitHub

23/03/2025, 01:45

Page 1 of 119

https://linkarooie.com/loftwah
https://github.com/loftwah

Linux for Pirates! Ruby on Whales

Table of Contents

Introduction

Chapter 1: Setting Sail with Ruby on Rails

Chapter 2: Treasure Mapping Your Project Structure

Chapter 3: Docker – Your Ship for the Journey

Chapter 4: Docker Compose – Coordinating Your Fleet

Chapter 5: Guarding Your Treasure – Using Private Dependencies

Chapter 6: Secure Authentication with SSH and HTTPS

Chapter 7: CI/CD – Automating Your Deployment

Chapter 8: Advanced Docker Techniques

Chapter 9: Monitoring and Scaling Your Application

Chapter 10: Security Best Practices

Chapter 11: Troubleshooting and Debugging

Conclusion

Appendices

Introduction

Ahoy, mateys! Welcome aboard the grand adventure that be “Linux for Pirates! Ruby on

Whales” This here tome be yer trusty map through the treacherous seas of Ruby on

Rails, Docker, and the mystical arts of DevOps. Whether ye be a scallywag just learning

the ropes or a seasoned buccaneer, this book be the compass to guide ye through the

stormy waters of modern application deployment.

23/03/2025, 01:45

Page 2 of 119

What Ye Will Learn:

Setting Sail with Ruby on Rails:

Introduction to Rails: Discover the lore and legend of Rails in web development.

Creating Your Rails Application: Hoist the Jolly Roger and set up a new Rails

project, configure PostgreSQL, and rig the sails with Tailwind CSS.

Treasure Mapping Your Project Structure:

Project Structure Overview: Chart the directory layout of a Rails application.

Version Control with Git: Best practices for organizing yer Git repository,

managing sensitive data, and handling private gems and npm packages.

Docker – Yer Ship for the Journey:

Introduction to Docker: Learn why Docker be the vessel of choice and master key

concepts like images, containers, and Dockerfiles.

Creating a Dockerfile for Rails: Write a Dockerfile from scratch, optimize with

multi-stage builds, and understand workflows for existing Rails projects.

Running Yer Rails App with Docker: Build and run Docker containers locally.

Docker Compose – Coordinatin’ Yer Fleet:

Introduction to Docker Compose: Explore the advantages of Docker Compose

for multi-service applications.

Setting Up Docker Compose: Write a docker-compose.yml file, configure

services for Rails, PostgreSQL, and Redis, and manage environment variables like

a true pirate captain.

Guardin’ Yer Treasure – Private Dependencies:

Managing Private Ruby Gems: Create and use private gems in yer Rails

application, and authenticate with GitHub for secure access.

Handling Private npm Packages: Create and use private npm packages,

integrating them seamlessly with yer Rails application.

23/03/2025, 01:45

Page 3 of 119

Secure Authentication with SSH and HTTPS:

SSH Key Management: Set up and use SSH keys in Docker, understand the

security implications, and explore better alternatives like PATs.

HTTPS Authentication: Use GitHub Personal Access Tokens (PATs) for secure

access, managing them securely in yer environment.

Automatin’ Yer Deployment – CI/CD:

Introduction to CI/CD: Understand the importance of continuous integration and

deployment.

Setting Up GitHub Actions: Write workflows for automated testing and

deployment, and follow best practices for secure and efficient CI/CD pipelines.

Deploying with GitHub Actions and Cloud: Step-by-step guide to deploying

Rails applications with GitHub Actions and a cloud provider.

Advanced Docker Techniques:

Multi-Stage Builds: Implement multi-stage builds for optimized Docker images.

Docker Volumes and Networks: Manage data persistence with Docker volumes,

purge data safely, and configure Docker networks for inter-container

communication.

Monitoring and Scaling Yer Application:

Application Monitoring: Tools and techniques for monitoring a Rails application,

including Raygun, Honeybadger, Axiom, Datadog, and Vector.

Scaling with Docker and the cloud: Strategies for scaling yer application, auto-

scaling, and load balancing considerations.

Security Best Practices:

Securing Yer Docker Containers: Identify and mitigate common security

vulnerabilities.

Managing Secrets and Sensitive Data: Best practices for handling sensitive

information in Docker and CI/CD pipelines.

23/03/2025, 01:45

Page 4 of 119

Troubleshootin’ and Debuggin’:

Common Issues and Solutions: Troubleshoot common problems in Dockerized

Rails applications.

Debuggin’ Techniques: Tools and methods for effective debugging in a Docker

environment.

Who This Book Be For:

“Rails and DevOps with Docker for Pirates!” be perfect for:

Developers and DevOps Engineers: Lookin’ to deepen their understanding of

Rails, Docker, and CI/CD practices.

Intermediate to Advanced Practitioners: With a basic knowledge of Ruby, Rails,

Docker, and DevOps, aim to level up their skills.

Tech Enthusiasts and Innovators: Passionate about modern deployment

practices and efficient application management.

Prerequisites

Before ye embark on this grand adventure, make sure ye have the following knowledge

and tools at yer disposal:

Knowledge:

1. Basic Programming Skills: Ye should be comfortable with basic programming

concepts and syntax.

2. Ruby and Rails: Familiarity with the Ruby programming language and basic Rails

framework. Ye should know how to create a simple Rails application and

understand MVC (Model-View-Controller) architecture.

3. Command Line Proficiency: Experience with using the command line interface

(CLI) for navigating directories, running scripts, and managing files.

4. Version Control with Git: Basic understanding of Git, including creating

repositories, committing changes, and pushing to remote repositories.

5. Docker Fundamentals: Knowledge of Docker concepts like containers, images,

and Dockerfiles. Ye should be able to build and run a basic Docker container.

6. DevOps Concepts: Familiarity with DevOps practices, including continuous

integration and deployment (CI/CD), and infrastructure as code (IaC).

23/03/2025, 01:45

Page 5 of 119

Tools:

1. Development Environment: A computer running macOS, Linux, or Windows with

a Unix-like shell (e.g., Git Bash, WSL for Windows).

2. Ruby and Rails: Ensure Ruby (version 3.3.0 or later) and Rails are installed on yer

machine. Use version managers like RVM or rbenv for managing Ruby versions.

3. Docker: Install Docker Desktop for container management. Make sure Docker

Compose is also installed.

4. Git: Have Git installed and configured with yer GitHub account for version control

and accessing repositories.

5. Code Editor: A code editor or integrated development environment (IDE) like

Visual Studio Code, Sublime Text, NeoVim or RubyMine.

6. Package Managers: Ensure you have package managers like npm (Node Package

Manager) and yarn for managing JavaScript dependencies.

By having these prerequisites, ye’ll be well-prepared to navigate the treacherous seas of

modern application deployment with “Rails and DevOps with Docker for Pirates!” Ready

yerself, and let the adventure begin!

Why This Book?

In this fast-paced world of tech, mastering the integration of development and

operations be crucial. Docker be revolutionizin’ application deployment, makin’ it easier

to build, ship, and run applications consistently across different environments. This

book provides a hands-on, practical approach to implementin’ these technologies,

ensuring ye can deliver reliable, scalable, and secure applications.

Join the adventure with “Rails and DevOps with Docker for Pirates!” and embark on a

journey to become a master of modern web development and deployment. Whether ye

be settin’ sail for the first time or seekin’ to enhance yer skills, this book be yer ultimate

guide to navigatin’ the digital seas.

About the Author

Ahoy, me hearties! Gather ‘round and let me spin ye a yarn about Dean Lofts, the

legendary Loftwah of the tech and music seas. Dean be a seasoned DevOps Engineer,

currently plundering the digital waves at Operoo. With over a decade of swashbuckling

experience, Dean has amassed a treasure trove of skills in infrastructure management,

23/03/2025, 01:45

Page 6 of 119

network security, and cloud computing, with a particular prowess in AWS. His journey

through various industries and roles has forged him into a versatile and formidable

force, capable of tackling the most complex technical challenges.

Professional Background

Dean’s voyage began in the Royal Australian Navy, where he served as a

Communications and Information Systems Sailor. For six years, he braved the high seas

of satellite communication, radio operation, and LAN administration. His valor and skill

earned him prestigious medals, such as the Australian Active Service Medal, the Iraq

Medal, and the Australian Defence Medal. This military stint laid a strong keel for his

technical expertise and disciplined approach to problem-solving.

After his naval adventures, Dean set sail into civilian waters, taking on roles like System

Engineer at Unisys and Solutions Consultant at UXC Connect. At UXC Connect, he

navigated high-profile projects for clients like Chevron and the Department of Defence,

ensuring their systems stayed afloat and their infrastructure was shipshape.

Dean’s prowess grew with roles such as Senior Test & Integration Technician at Thales

and System Administrator at PVS Australia Pty Ltd. He maintained IT infrastructure,

implemented network security measures, and optimized system performance, honing

his skills in troubleshooting, infrastructure management, and cloud computing.

In his recent voyages, including Site Reliability Engineer at PlayHQ Sports and DevOps

Engineer at CorpCloud Pty Ltd, Dean bridged the gap between development and IT

operations. He wielded automation tools to create scalable and reliable software

systems, championing the importance of continuous integration and continuous

deployment (CI/CD) practices.

Skills and Endorsements

Dean’s technical arsenal be extensive and highly endorsed. Key skills include:

Infrastructure and Networking: Proven capabilities in designing and maintaining

robust infrastructure and networks, with endorsements in network security and

DNS.

DevOps and CI/CD: Expertise in deploying and automating processes with tools

like Docker, Jenkins, and GitHub Actions, ensuring efficient and secure software

delivery.

23/03/2025, 01:45

Page 7 of 119

Cloud Computing: Skilled in leveraging AWS services for scalable and efficient

solutions, demonstrated by his AWS Certified Solutions Architect – Professional

certification.

Programming and Scripting: Proficient in languages such as Ruby, Python, Bash,

and more, with a strong focus on creating maintainable and efficient code.

Security: In-depth knowledge of network security, ensuring secure and reliable

operations, with certifications like CompTIA Security+.

Dean’s skills have been recognized and endorsed by shipmates and landlubbers alike,

highlighting his expertise and reliability.

Contributions and Achievements

Dean be a passionate advocate for open source, making significant contributions to

numerous projects, including Appwrite, EddieHub, BioDrop, NASA, and WordPress. He

served as an ambassador for these communities, driving technological advancement

and fostering a collaborative environment. His open-source contributions reflect his

commitment to sharing knowledge and improving the tech ecosystem.

One of Dean’s notable feats be his integration of the yjit compiler, which delivered a 15%

performance boost and substantial cost savings. This innovation showcases his ability

to identify and implement improvements that have a meaningful impact on performance

and efficiency.

Creative Pursuits

Beyond the tech realm, Dean be an accomplished music producer known as Loftwah

The Beatsmiff. He has produced albums and collaborated with artists like Grind Mode

Cypher and OptiMystic MC. His musical projects, including “Salty Waterz” and “Day of

the Guiding Light,” demonstrate his creative prowess and ability to blend technical

precision with artistic expression.

Published Works

Dean be the author of “Linux for Pirates!”, a unique and engaging book that demystifies

Linux for enthusiasts and professionals alike. The book’s innovative approach and

accessible style have made it a valuable resource for those looking to deepen their

23/03/2025, 01:45

Page 8 of 119

understanding of Linux. Dean’s ability to break down complex concepts into

understandable content be evident in his writing and teaching.

Personal Life

In his personal life, Dean be a dedicated father and mental health advocate. He balances

his professional and creative pursuits with a commitment to his family and personal

well-being. Dean enjoys beat making, reading, and curating tech-focused content on his

YouTube channel, where he shares insights and tutorials with a broad audience.

Dean’s journey be a testament to his relentless pursuit of excellence and his

commitment to sharing knowledge with the community. His work ethic and innovative

approach have earned him accolades and recognition in both the tech and music

industries.

Discover More

To learn more about Dean’s multifaceted journey, check out his contributions on

platforms like GitHub, listen to his music on Spotify, and read his insightful tech articles.

Welcome to Dean’s world—a blend of rhythm, code, and a relentless drive for

excellence.

Chapter 1: Setting Sail with Ruby on Rails

Introduction to Ruby on Rails

Ahoy, mateys! Before we hoist the sails and embark on our grand adventure with Ruby

on Rails, let’s take a moment to understand the history and significance of this mighty

framework.

Ruby on Rails, often simply called Rails, was forged by the brilliant mind of David

Heinemeier Hansson (DHH) back in 2004. Rails be a powerful web application

framework written in the Ruby programming language, designed to make the

development of web applications smoother than a calm sea. It follows the principles of

Convention over Configuration (CoC) and Don’t Repeat Yourself (DRY), allowing

buccaneers like ye to write less code and achieve more.

23/03/2025, 01:45

Page 9 of 119

Rails has charted the course for many popular web applications, including Basecamp,

GitHub, and Shopify. Its treasure lies in its simplicity and productivity, enabling

developers to build complex applications swiftly and efficiently.

Creating Your Rails Application

Now, let’s set sail and create our Rails application. Follow these steps to ensure your

ship is well-equipped for the journey ahead.

Step 1: Installing Ruby and Rails

To begin our voyage, we need to install Ruby. There be several ways to manage Ruby

versions on your system. We’ll cover the most popular methods: RVM, rbenv, ruby-

install, and chruby. Choose the one that best suits your needs.

Using RVM (Ruby Version Manager)

1. Install RVM:

Head over to the RVM website for the latest installation instructions. As of now,

you can use this command to install RVM:

curl -sSL https://get.rvm.io | bash -s stable

2. Load RVM into your shell session:

source ~/.rvm/scripts/rvm

3. Add RVM to your shell configuration file (e.g., .zshrc):

echo 'source ~/.rvm/scripts/rvm' >> ~/.zshrc

4. Install Ruby using RVM:

23/03/2025, 01:45

Page 10 of 119

https://rvm.io/

rvm install 3.3.0
rvm use 3.3.0 --default

5. Verify the installation:

ruby -v

Other Ruby Version Managers

While RVM be a popular choice, there be other ways to manage Ruby versions. Here be

a quick overview:

rbenv: Lightweight and simpler to set up. Visit the rbenv GitHub page for

installation details.

ruby-install and chruby: For those who prefer more control and flexibility. Visit

the ruby-install GitHub page and chruby GitHub page for instructions.

Each of these tools has its own way of configuring your shell (e.g., .zshrc). Here’s what

to do:

rbenv:

echo 'export PATH="$HOME/.rbenv/bin:$PATH"' >> ~/.zshrc
echo 'eval "$(rbenv init - zsh)"' >> ~/.zshrc

chruby:

echo 'source /usr/local/share/chruby/chruby.sh' >> ~/.zshrc
echo 'source /usr/local/share/chruby/auto.sh' >> ~/.zshrc
echo 'chruby ruby-3.3.0' >> ~/.zshrc

Once ye’ve configured yer shell, restart it or run source ~/.zshrc to apply the

changes.

23/03/2025, 01:45

Page 11 of 119

https://github.com/rbenv/rbenv
https://github.com/postmodern/ruby-install
https://github.com/postmodern/chruby

Checking Your Shell Configuration

To ensure yer shell be properly set up, ye can check if the Ruby version manager is

working correctly:

1. Open a new terminal session or run:

source ~/.zshrc

2. Verify the Ruby version:

ruby -v

This should return ruby 3.3.0 if everything be set up correctly.

Step 2: Install Rails

With Ruby ready to set sail, it’s time to install Rails.

1. Install Rails:

gem install rails

2. Verify the installation:

rails -v

Step 3: Creating Your Rails Application

Now, it’s time to create our Rails application. We’ll set it up to use PostgreSQL as the

database and Tailwind CSS for styling.

1. Create a new Rails application with PostgreSQL and Tailwind CSS:

23/03/2025, 01:45

Page 12 of 119

rails new pirate_app -d postgresql --css tailwind
cd pirate_app

2. Configure PostgreSQL: Open the config/database.yml file and configure it for

PostgreSQL:

default: &default
 adapter: postgresql
 encoding: unicode
 pool: <%= ENV.fetch("RAILS_MAX_THREADS") { 5 } %>
 username: postgres
 password: postgres
 host: localhost

development:
 <<: *default
 database: pirate_app_development

test:
 <<: *default
 database: pirate_app_test

production:
 <<: *default
 database: pirate_app_production
 username: pirate_app
 password: <%= ENV['PIRATE_APP_DATABASE_PASSWORD'] %>

Note: your configuration for username and password may be different

so if you have issues here that is where you’ll need to look

3. Create the database:

rails db:create

4. Start the Rails server:

23/03/2025, 01:45

Page 13 of 119

rails server

Step 4: Generating a Home Controller and View

1. Generate a Home Controller:

rails generate controller Home index

2. Set the root route: Open the config/routes.rb file and set the root route to the

index action of the Home controller:

Rails.application.routes.draw do
 root 'home#index'
end

3. Create the Landing Page Content: Open the app/views/home/index.html.erb

file and add the following HTML code with Tailwind CSS classes to create a pirate-

themed landing page:

23/03/2025, 01:45

Page 14 of 119

<div class="min-h-screen bg-blue-900 flex items-center
justify-center">
 <div class="max-w-2xl bg-gray-800 text-white p-10 rounded-
lg shadow-lg">
 <h1 class="text-5xl font-bold mb-4 text-center">Ahoy,
Matey!</h1>
 <p class="text-xl mb-6 text-center">
 Welcome to Pirate App, the ultimate pirate-themed
adventure on the high
 seas!
 </p>

 <div class="flex justify-center mb-6">
 <img
 src="https://example.com/pirate-ship.jpg"
 alt="Pirate Ship"
 class="w-full h-auto rounded-lg shadow-md"
 />
 </div>

 <div class="text-center">
 <a
 href="#get-started"
 class="bg-yellow-500 text-black font-bold py-2 px-4
rounded hover:bg-yellow-600"
 >Get Started
 </div>
 </div>
</div>

Note: Replace the image with one of your own.

Step 5: Adding Navigation and Footer

1. Add Navigation Bar: Update app/views/layouts/application.html.erb to

include a simple navigation bar and footer:

23/03/2025, 01:45

Page 15 of 119

<!DOCTYPE html>
<html>
 <head>
 <title>PirateApp</title>
 <%= csrf_meta_tags %> <%= csp_meta_tag %> <%=
stylesheet_link_tag
 "application", "data-turbo-track": "reload" %> <%=
javascript_include_tag
 "application", "data-turbo-track": "reload", defer: true
%>
 </head>

 <body class="bg-blue-900 text-white">
 <header class="bg-gray-800 p-4">
 <div class="container mx-auto flex justify-between
items-center">
 <h1 class="text-2xl font-bold">PirateApp</h1>
 <nav>
 <ul class="flex space-x-4">
 <a href="/" class="hover:text-yellow-
500">Home

 </nav>
 </div>
 </header>
 <%= yield %>
 <footer class="bg-gray-800 p-4 mt-10">
 <div class="container mx-auto text-center">
 <p>© 2024 PirateApp. All rights reserved.</p>
 </div>
 </footer>
 </body>
</html>

With these steps, you will have a simple pirate-themed landing page for your Rails

application using Tailwind CSS, complete with navigation and footer.

Avast! Ye now have a Rails application with PostgreSQL and Tailwind CSS ready to set

sail!

23/03/2025, 01:45

Page 16 of 119

Configuring PostgreSQL in Rails

Configuring PostgreSQL for a Rails application involves setting up the

config/database.yml file. This file tells Rails how to connect to your PostgreSQL

database in different environments (development, test, and production). Here’s a

detailed explanation of the configuration process and how it works in the context of a

Rails application.

Step-by-Step Explanation of database.yml

The config/database.yml file contains the database configuration for different

environments. Each environment (development, test, and production) can have its own

settings. Here’s the structure and explanation:

default: &default
 adapter: postgresql
 encoding: unicode
 pool: <%= ENV.fetch("RAILS_MAX_THREADS") { 5 } %>
 username: postgres
 password: postgres
 host: localhost

development:
 <<: *default
 database: pirate_app_development

test:
 <<: *default
 database: pirate_app_test

production:
 <<: *default
 database: pirate_app_production
 username: pirate_app
 password: <%= ENV['PIRATE_APP_DATABASE_PASSWORD'] %>

23/03/2025, 01:45

Page 17 of 119

Default Configuration

default: &default
 adapter: postgresql
 encoding: unicode
 pool: <%= ENV.fetch("RAILS_MAX_THREADS") { 5 } %>
 username: postgres
 password: postgres
 host: localhost

default: &default : Defines a set of default settings that can be reused across

different environments. The &default is a YAML anchor that allows these settings

to be referenced elsewhere in the file.

adapter: postgresql : Specifies that PostgreSQL is the database adapter to be

used.

encoding: unicode : Sets the character encoding for the database to Unicode,

which supports international characters.

pool: <%= ENV.fetch("RAILS_MAX_THREADS") { 5 } %> : Sets the database

connection pool size. It fetches the value from the RAILS_MAX_THREADS

environment variable, defaulting to 5 if not set. The connection pool is the number

of connections Rails maintains to the database.

username: postgres : The database username for connecting to PostgreSQL.

password: postgres : The database password for the given username.

host: localhost : Specifies that the database is hosted on the local machine.

Development Configuration

development:
 <<: *default
 database: pirate_app_development

<<: *default : Inherits all the settings from the default section using the YAML

alias *default .

database: pirate_app_development : Specifies the name of the development

database. Rails will connect to this database when running in development mode.

23/03/2025, 01:45

Page 18 of 119

Test Configuration

test:
 <<: *default
 database: pirate_app_test

<<: *default : Inherits all the settings from the default section.

database: pirate_app_test : Specifies the name of the test database. Rails uses

this database when running tests.

Production Configuration

production:
 <<: *default
 database: pirate_app_production
 username: pirate_app
 password: <%= ENV['PIRATE_APP_DATABASE_PASSWORD'] %>

<<: *default : Inherits all the settings from the default section.

database: pirate_app_production : Specifies the name of the production

database.

username: pirate_app : The database username for production. This should be

different from the development and test usernames for security reasons.

password: <%= ENV['PIRATE_APP_DATABASE_PASSWORD'] %> : Fetches the

database password from an environment variable. This ensures sensitive

information is not hardcoded in the file.

Environment Variables

Using environment variables for sensitive information (like database passwords) is a

best practice. It keeps these details secure and allows for easier changes across

different environments (e.g., staging, production).

Setting Environment Variables:

23/03/2025, 01:45

Page 19 of 119

On Unix-like systems (macOS, Linux), you can set environment variables in

your shell configuration file (.bashrc , .zshrc , etc.):

export PIRATE_APP_DATABASE_PASSWORD=your_secure_password

On Windows, you can set environment variables using the set command:

set PIRATE_APP_DATABASE_PASSWORD=your_secure_password

Creating and Managing the Database

Once the config/database.yml file is properly configured, you can create the

database and start the Rails server.

1. Create the database:

rails db:create

This command will create the databases specified in the database.yml file for the

current environment.

2. Start the Rails server:

rails server

This command starts the Rails application. The server will use the database

configuration for the current environment (development by default).

Summary

The config/database.yml file is a critical part of configuring your Rails application to

work with PostgreSQL. It specifies how Rails connects to the database in different

environments, using settings inherited from a default configuration. By leveraging

23/03/2025, 01:45

Page 20 of 119

environment variables, you can securely manage sensitive information like database

passwords. Once configured, you can create the database and start the Rails server to

begin development.

Rails Project Troubleshooting Steps

Even the most seasoned pirates encounter rough seas. If ye run into trouble while

setting up yer Rails project, here be some common issues and troubleshooting steps to

help ye navigate through the storm.

Troubleshooting Installation Issues

1. Ruby and Rails Installation Problems:

Issue: Ruby or Rails not found after installation.

Solution: Verify the installation with ruby -v and rails -v . Ensure the

version manager (RVM, rbenv, etc.) is properly configured in your shell profile

(.zshrc or .bashrc). Restart your terminal or run source ~/.zshrc or

source ~/.bashrc .

2. Bundler Errors:

Issue: Bundler fails to install gems.

Solution: Ensure you have the correct version of Bundler installed. Run gem

install bundler and then bundle install . Check for any specific gem

installation errors and ensure all dependencies are met.

Database Configuration Issues

1. PostgreSQL Connection Problems:

Issue: Rails cannot connect to the PostgreSQL database.

Solution: Verify that PostgreSQL is running. Check the

config/database.yml file for correct database credentials. Test the

connection with psql -U postgres -h localhost . Ensure the pg gem is

installed by running gem install pg .

2. Database Creation Failures:

23/03/2025, 01:45

Page 21 of 119

Issue: Error running rails db:create .

Solution: Ensure you have the necessary privileges to create databases.

Check PostgreSQL user permissions and roles. Verify that username and

password in config/database.yml match your PostgreSQL configuration.

Rails Server Issues

1. Server Not Starting:

Issue: Rails server fails to start.

Solution: Check the server logs for error messages

(log/development.log). Ensure all necessary gems are installed and the

database is properly configured. Run rails db:migrate to apply any

pending migrations.

2. Port Conflicts:

Issue: Address already in use.

Solution: Ensure no other process is using port 3000. Stop any running Rails

servers or other services using the same port. Use lsof -i :3000 to

identify and kill conflicting processes.

Docker-Related Issues

1. Docker Build Failures:

Issue: Docker image build fails.

Solution: Check the Dockerfile for syntax errors and correct paths. Ensure

all dependencies are available and properly referenced. Use docker build -

-no-cache . to rebuild the image without using the cache.

2. Container Connection Problems:

Issue: Rails application cannot connect to PostgreSQL in Docker.

Solution: Verify the docker-compose.yml configuration. Ensure the services

are correctly defined and linked. Use docker-compose logs to inspect

service logs for errors. Check environment variables for proper database

connection details.

23/03/2025, 01:45

Page 22 of 119

Common Errors and Solutions

1. Missing Gem Errors:

Issue: GemNotFound or LoadError .

Solution: Run bundle install to install missing gems. Ensure the gem is

listed in the Gemfile . If using private gems, verify authentication settings.

2. Asset Compilation Failures:

Issue: Errors during asset precompilation.

Solution: Check for missing dependencies or incorrect paths in asset files.

Ensure all necessary JavaScript and CSS libraries are installed. Run

RAILS_ENV=production rails assets:precompile for a more detailed error

output.

Finding Help

1. Rails Guides and Documentation:

Visit the Rails Guides for comprehensive documentation and tutorials.

2. Stack Overflow:

Search for similar issues on Stack Overflow. Use tags like ruby-on-rails ,

postgresql , docker , and tailwind-css to find relevant solutions.

3. GitHub Issues:

Check the GitHub repositories of gems and libraries for reported issues and

solutions.

4. Community Forums and Chat:

Join Rails, Docker, and DevOps communities on platforms like Reddit, Discord,

Twitter/X and Slack. Engaging with these communities can provide quick help and

insights from experienced developers.

By following these troubleshooting steps and utilizing available resources, ye’ll be better

equipped to handle any issues that arise during yer Rails and Docker adventure. Happy

sailing!

23/03/2025, 01:45

Page 23 of 119

https://guides.rubyonrails.org/
https://stackoverflow.com/

Summary

Ye’ve successfully set up Ruby and Rails on yer ship, configured PostgreSQL for yer

database needs, and hoisted the Tailwind CSS sails. With yer environment shipshape,

ye’re ready to embark on the next leg of yer Rails adventure. Now, it’s time to navigate

the seas of development, deployment, and beyond!

Installing NodeJS

Installing NodeJS with NVM

To manage multiple versions of Node.js efficiently, you can use Node Version Manager

(NVM). Here’s how to install NVM and set it up with the LTS version of Node.js

(v20.15.1):

1. Install & Update Script:

You can install or update NVM using the install script. Use either of the following

commands to download and run the script:

curl -o- https://raw.githubusercontent.com/nvm-
sh/nvm/v0.39.7/install.sh | bash

wget -qO- https://raw.githubusercontent.com/nvm-
sh/nvm/v0.39.7/install.sh | bash

Running either of these commands will clone the NVM repository to ~/.nvm and

attempt to add the following lines to your profile file (~/.bash_profile ,

~/.zshrc , ~/.profile , or ~/.bashrc):

export NVM_DIR="$([-z "${XDG_CONFIG_HOME-}"] && printf %s
"${HOME}/.nvm" || printf %s "${XDG_CONFIG_HOME}/nvm")"
[-s "$NVM_DIR/nvm.sh"] && \. "$NVM_DIR/nvm.sh" # This loads
nvm

23/03/2025, 01:45

Page 24 of 119

2. Load NVM:

After installation, you might need to restart your terminal or source your profile file

to load NVM:

For bash
source ~/.bashrc

For zsh
source ~/.zshrc

For ksh
. ~/.profile

3. Verify Installation:

To verify that NVM has been installed, run:

command -v nvm

This should print nvm if the installation was successful.

4. Install Node.js LTS Version (v20.15.1):

Once NVM is installed, you can install the LTS version of Node.js (v20.15.1):

nvm install 20.15.1

5. Use the LTS Node.js Version:

To use the LTS version of Node.js, run:

nvm use 20.15.1

6. Set the LTS Node.js Version as Default:

23/03/2025, 01:45

Page 25 of 119

To set the LTS version of Node.js as the default, run:

nvm alias default 20.15.1

Troubleshooting

If you encounter issues where nvm is not found after installation:

Ensure that the profile file is sourced properly.

Restart your terminal.

Manually add the following lines to your profile file and source it:

export NVM_DIR="$([-z "${XDG_CONFIG_HOME-}"] && printf %s
"${HOME}/.nvm" || printf %s "${XDG_CONFIG_HOME}/nvm")"
[-s "$NVM_DIR/nvm.sh"] && \. "$NVM_DIR/nvm.sh" # This loads
nvm

Notes for macOS Users

For macOS users, especially those with Apple Silicon chips:

Ensure you have Xcode command line tools installed:

xcode-select --install

If you face issues, ensure you create the necessary profile files (~/.bash_profile

or ~/.zshrc) if they don’t exist, and then rerun the install script.

Summary

By installing and configuring NVM, you can easily manage multiple versions of Node.js,

making your development workflow more flexible and efficient. For this setup, we have

used the LTS version v20.15.1 to ensure stability and long-term support.

23/03/2025, 01:45

Page 26 of 119

Next Steps

In the next chapter, we’ll delve deeper into organizing yer Rails project structure, setting

up version control with Git, and managing private gems and npm packages. Stay the

course, and ye’ll be a Rails and DevOps pirate in no time!

Chapter 2: Treasure Mapping Your Project

Structure

Project Structure Overview

Ahoy, me hearties! Now that we’ve set sail with our Ruby on Rails application, it’s time to

chart the course of our project structure. Understanding the directory layout of a Rails

application is crucial for navigating and managing your code effectively.

When ye create a new Rails application, Rails generates a standard directory structure.

Here’s a brief overview of the key directories and their purposes:

app/: Contains the core application code. This is where ye’ll find your models,

views, controllers, helpers, mailers, and jobs.

assets/: Manages your application’s front-end assets like images,

JavaScript, and stylesheets.

controllers/: Holds the controller classes responsible for handling requests

and responses.

models/: Contains the model classes that interact with the database.

views/: Holds the view templates that render HTML.

helpers/: Contains helper modules used to clean up your views.

mailers/: Manages email delivery logic.

jobs/: Contains background job classes.

bin/: Contains executable files like rails and rake.

config/: Houses configuration files for the application, including database, routes,

initializers, and environments.

23/03/2025, 01:45

Page 27 of 119

environments/: Contains environment-specific settings (development, test,

production).

initializers/: Holds files that run during application initialization.

locales/: Manages translation files for internationalization.

db/: Manages database-related files.

migrate/: Contains migration files for altering the database schema.

seeds.rb: Holds seed data for populating the database.

lib/: Used for extended modules and libraries.

tasks/: Contains custom rake tasks.

log/: Stores application log files.

public/: Holds static files like error pages and assets.

test/ or spec/: Manages test or spec files for testing the application.

tmp/: Contains temporary files like cache and pid files.

vendor/: Manages third-party code like plugins and gems.

Understanding this structure will help ye navigate and organize yer code effectively.

Setting Up Version Control with Git

Now, let’s set up version control to keep our codebase shipshape. Git be the tool of

choice for version control, and GitHub be our treasure chest for storing code.

Best Practices for Organizing Your Git Repository

Creating a GitHub Repository

If ye haven’t already, head over to GitHub and sign up for an account.

Create a New Repository:

Navigate to GitHub.

Click on the “+” icon in the top-right corner and select “New repository”.

23/03/2025, 01:45

Page 28 of 119

https://github.com/
https://github.com/

Fill in the repository name, description (optional), and choose whether to make it

public or private.

Click “Create repository”.

Once ye have a repository, follow these steps to get yer code into the cloud.

1. Initialize Git:

git init --initial-branch=main

2. Commit Early and Often: It be best practice to commit yer changes frequently

with clear and concise commit messages. This makes it easier to track changes

and roll back if needed.

git add .
git commit -m "Yargh Mateys"

3. Add Remote Repository: Add the GitHub repository as a remote to yer local

repository. Replace your-username and your-repo with yer GitHub username

and repository name.

git remote add origin git@github.com:loftwah-
demo/pirate_app.git

4. Push to GitHub: Push yer local commits to the remote repository on GitHub.

git branch -M main
git push -u origin main

5. Use Branches: Create branches for new features or bug fixes. This keeps the

main branch clean and stable.

23/03/2025, 01:45

Page 29 of 119

git checkout -b feature/new-feature

6. Merge with Pull Requests: Use pull requests to merge changes into the main

branch. This allows for code review and discussion before changes are integrated.

Importance of .gitignore and Managing Sensitive Data

The .gitignore file be crucial for managing what files Git tracks. It helps keep

unnecessary files out of your repository, reducing clutter and protecting sensitive

information.

Never commit sensitive data such as API keys, passwords, or configuration files

containing secrets. Use environment variables or a secrets management tool instead.

For Rails applications, the .env file is commonly used to manage environment-specific

configurations. However, remember to add .env to your .gitignore to prevent it from

being tracked by Git.

.gitignore
.env

Creating and Using Private Gems and npm Packages

In our adventure, we’ll create our own private gems and npm packages that we can use

in our Rails application. This be an essential skill for any Rails developer, as it allows for

modular and reusable code across multiple projects.

Creating a Private Ruby Gem

1. Set Up the Gem Structure: Create a new directory for your gem:

23/03/2025, 01:45

Page 30 of 119

mkdir my_private_gem
cd my_private_gem
bundle gem .

2. Edit the Gem Specification: Open the my_private_gem.gemspec file and fill in the

necessary details:

Gem::Specification.new do |spec|
 spec.name = "my_private_gem"
 spec.version = "0.1.0"
 spec.authors = ["Your Name"]
 spec.email = ["your.email@example.com"]
 spec.summary = "A private gem for demonstration
purposes"
 spec.description = "This gem is used to demonstrate using
private gems in a Rails application"
 spec.homepage = "https://github.com/loftwah-
demo/my_private_gem"
 spec.license = "MIT"
 spec.files = Dir["lib/**/*.rb"]
 spec.require_paths = ["lib"]
end

3. Add Functionality: Create a simple functionality in lib/my_private_gem.rb :

module MyPrivateGem
 class Error < StandardError; end

 def self.hello
 "Hello from MyPrivateGem!"
 end
end

4. Commit and Push to GitHub: Initialize a new Git repository and push the gem to a

private repository on GitHub:

23/03/2025, 01:45

Page 31 of 119

git init --initial-branch=main
git add .
git commit -m "Initial commit"
git remote add origin git@github.com:loftwah-
demo/my_private_gem.git
git branch -M main
git push -u origin main

Note: the following changes are made in the Rails application you started

earlier.

Using the Private Gem in Rails

To use the private gem in your Rails application, ye’ll need to create a GitHub Personal

Access Token (PAT) for authentication.

1. Create a GitHub PAT:

Go to GitHub and navigate to Settings > Developer settings > Personal

access tokens.

Click Generate new token.

Select the scopes repo and read:packages , then generate the token.

Copy the token and store it securely.

2. Add the Private Gem to Your Rails Application’s Gemfile:

Gemfile
gem 'my_private_gem', git: 'https://github.com/loftwah-
demo/my_private_gem.git'

3. Configure Bundler to Use the PAT: Create or update your .bundle/config file

to include the GitHub PAT:

bundle config https://github.com/loftwah-demo
<your_github_token>

23/03/2025, 01:45

Page 32 of 119

Alternatively, set the environment variable in your shell:

export BUNDLE_GITHUB__COM=<your_github_token>

4. Install the Gem: Run bundle install to install the gem:

bundle install

Note: We will cover using this in your Rails application in chapter x

Creating a Private npm Package

1. Set Up the npm Package: Create a new directory for your npm package:

mkdir my-private-npm-package
cd my-private-npm-package
npm init -y

2. Update package.json : Edit package.json to include the necessary details:

{
 "name": "my-private-npm-package",
 "version": "1.0.0",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": ["loftwah", "linux", "for", "pirates"],
 "author": "Dean Lofts",
 "license": "ISC",
 "description": "A private package for Linux for Pirates!"
}

23/03/2025, 01:45

Page 33 of 119

3. Add Functionality: Create a simple functionality in index.js :

function helloFromNpm() {
 return "Hello from my private npm package!";
}

module.exports = { helloFromNpm };

4. Commit and Push to GitHub: Initialize a new Git repository and push the package

to a private repository on GitHub:

git init --initial-branch=main
git add .
git commit -m "Initial commit"
git remote add origin git@github.com:loftwah-demo/my-private-
npm-package.git
git push -u origin main

Installing the Private Package in Your Rails Application

1. Navigate to Your Rails Application Directory:

cd ../pirate_app

2. Create a package.json File:

npm init -y

3. Update package.json to Include the Private Package:

Open the generated package.json file in a text editor and modify it to include

your private package:

23/03/2025, 01:45

Page 34 of 119

{
 "name": "pirate_app",
 "version": "1.0.0",
 "description": "This README would normally document
whatever steps are necessary to get the application up and
running.",
 "main": "index.js",
 "directories": {
 "lib": "lib",
 "test": "test"
 },
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [],
 "author": "",
 "license": "ISC",
 "dependencies": {
 "my-private-npm-package":
"git+https://github.com/loftwah-demo/my-private-npm-
package.git"
 }
}

4. Configure npm for Authentication:

Create an .npmrc file in your Rails application’s root directory to authenticate with

GitHub Packages:

//npm.pkg.github.com/:_authToken=${GITHUB_PAT}

5. Install the Dependencies:

Run npm install to install the packages defined in package.json :

npm install

23/03/2025, 01:45

Page 35 of 119

Note: You will be able to see the package in your node_modules directory

and we will set this up further in chapter 5.

Summary

1. Set Up a Private npm Package: Created a directory, added functionality, and

pushed to a private GitHub repository. Also, updated package.json with the

necessary details.

2. Create a package.json File in Rails App: Initialized a package.json file and

added the private package as a dependency.

3. Configure Authentication: Created an .npmrc file for GitHub package

authentication.

4. Install Dependencies: Ran npm install to install the private package.

By following these steps, you’ve set up a private npm package, pushed it to GitHub, and

configured your Rails application to use this package. This ensures your codebase is

well-organized and secure, allowing you to smoothly develop your application.

Next Steps

In the next chapter, we’ll dive into Docker, the mighty ship that’ll carry our Rails

application across the seas of deployment. We’ll learn how to write Dockerfiles, build

Docker images, and run our Rails app within Docker containers. Stay the course, and

ye’ll be a Rails and DevOps pirate in no time!

Chapter 3: Docker – Your Ship for the Journey

Introduction to Docker

Ahoy, me hearties! Docker be the sturdy ship that’ll carry ye across the treacherous

seas of deployment and development. In this chapter, we’ll set sail with Docker, learnin’

its key concepts and why it’s the vessel of choice for modern developers.

23/03/2025, 01:45

Page 36 of 119

What is Docker and Why Use It?

Docker be an open platform for developing, shipping, and running applications. It

enables ye to separate yer applications from yer infrastructure, makin’ it easier to deploy

and manage them across different environments. Here be why Docker be invaluable:

Consistency: Docker ensures yer application runs the same, regardless of where

it be deployed.

Isolation: Each application runs in its own container, avoidin’ conflicts with other

applications.

Portability: Docker containers can be easily moved between different

environments and cloud providers.

Efficiency: Docker images be lightweight and start quickly, improvin’ resource

utilization.

Key Docker Concepts: Images, Containers, Dockerfiles

Images: Immutable snapshots of yer application, includin’ all dependencies and

configurations.

Containers: Running instances of Docker images, providin’ isolated environments

for yer application.

Dockerfiles: Scripts that define how to build Docker images, includin’ all

necessary steps and configurations.

Using and Modifying the Provided Dockerfile for Rails

When ye generate a new Rails project, it comes with a Dockerfile ready to use. However,

we had to make some modifications to this default Dockerfile. These changes were

necessary to install a private package from GitHub using a Personal Access Token

(PAT). Let’s explore these modifications.

Commands Used

1. To show Rails credentials using the nano editor:

23/03/2025, 01:45

Page 37 of 119

EDITOR=nano bin/rails credentials:show

Note: you need this one to get your SECRET_KEY_BASE

2. To run the Docker container:

docker run -e SECRET_KEY_BASE=<my-key> -p 3000:3000
pirate_app

3. To build the Docker image using a secret token:

GITHUB_TOKEN=<my-token> docker buildx build --secret
id=GITHUB_TOKEN -t pirate_app .

Modifications to the Dockerfile

Here’s the modified Dockerfile with the necessary changes to handle secrets and build

the application:

23/03/2025, 01:45

Page 38 of 119

syntax=docker/dockerfile:1

Make sure RUBY_VERSION matches the Ruby version in .ruby-version

and Gemfile

ARG RUBY_VERSION=3.3.0

FROM registry.docker.com/library/ruby:$RUBY_VERSION-slim AS base

Rails app lives here

WORKDIR /rails

Set production environment

ENV RAILS_ENV="production" \

 BUNDLE_DEPLOYMENT="1" \

 BUNDLE_PATH="/usr/local/bundle" \

 BUNDLE_WITHOUT="development"

Throw-away build stage to reduce size of final image

FROM base as build

Install packages needed to build gems

RUN apt-get update -qq && \

 apt-get install --no-install-recommends -y build-essential git

libpq-dev libvips pkg-config

Install application gems

COPY Gemfile Gemfile.lock ./

Use secret to access GitHub token to install private packages

RUN --mount=type=secret,id=GITHUB_TOKEN \

 GITHUB_TOKEN=${GITHUB_TOKEN} && \

 git config --global

url."https://${GITHUB_TOKEN}@github.com/".insteadOf

23/03/2025, 01:45

Page 39 of 119

"https://github.com/" && \

 bundle install && \

 rm -rf ~/.bundle/ "${BUNDLE_PATH}"/ruby/*/cache

"${BUNDLE_PATH}"/ruby/*/bundler/gems/*/.git && \

 bundle exec bootsnap precompile --gemfile

Copy application code

COPY . .

Precompile bootsnap code for faster boot times

RUN bundle exec bootsnap precompile app/ lib/

Precompiling assets for production without requiring secret

RAILS_MASTER_KEY

RUN SECRET_KEY_BASE_DUMMY=1 ./bin/rails assets:precompile

Final stage for app image

FROM base

Install packages needed for deployment

RUN apt-get update -qq && \

 apt-get install --no-install-recommends -y curl libvips

postgresql-client && \

 rm -rf /var/lib/apt/lists /var/cache/apt/archives

Copy built artifacts: gems, application

COPY --from=build /usr/local/bundle /usr/local/bundle

COPY --from=build /rails /rails

Run and own only the runtime files as a non-root user for security

RUN useradd rails --create-home --shell /bin/bash && \

 chown -R rails:rails db log storage tmp

USER rails:rails

23/03/2025, 01:45

Page 40 of 119

Entrypoint prepares the database.

ENTRYPOINT ["/rails/bin/docker-entrypoint"]

Start the server by default, this can be overwritten at runtime

EXPOSE 3000

CMD ["./bin/rails", "server"]

Explanation of Changes

The changes we made are here:

Use secret to access GitHub token to install private packages

RUN --mount=type=secret,id=GITHUB_TOKEN \

 GITHUB_TOKEN=${GITHUB_TOKEN} && \

 git config --global

url."https://${GITHUB_TOKEN}@github.com/".insteadOf

"https://github.com/" && \

 bundle install && \

 rm -rf ~/.bundle/ "${BUNDLE_PATH}"/ruby/*/cache

"${BUNDLE_PATH}"/ruby/*/bundler/gems/*/.git && \

 bundle exec bootsnap precompile --gemfile

We made these changes to the Dockerfile to handle the installation of private packages

from GitHub using a Personal Access Token (PAT). This approach ensures that our

application can securely access and install these private packages during the Docker

build process.

Running Yer Rails App with Docker

Now that we’ve modified our Dockerfile, let’s build and run our Docker containers

locally.

1. Build the Docker Image:

23/03/2025, 01:45

Page 41 of 119

GITHUB_TOKEN=<my-token> docker buildx build --secret
id=GITHUB_TOKEN -t pirate_app .

2. Run the Docker Container:

docker run -e SECRET_KEY_BASE=<my-key> -p 3000:3000
pirate_app

Yer Rails application should now be built into a Docker container. However, since our

application relies on PostgreSQL, it won’t be runnin’ properly just yet. In the next

chapter, we’ll dive into Docker Compose to orchestrate multiple services, including our

Rails app and PostgreSQL database.

Dockerfile Walkthrough

Let’s walk through the Dockerfile step-by-step to understand each part and how it helps

in building and running your Rails application.

23/03/2025, 01:45

Page 42 of 119

Base Stage

syntax=docker/dockerfile:1

Make sure RUBY_VERSION matches the Ruby version in .ruby-version

and Gemfile

ARG RUBY_VERSION=3.3.0

FROM registry.docker.com/library/ruby:$RUBY_VERSION-slim AS base

Rails app lives here

WORKDIR /rails

Set production environment

ENV RAILS_ENV="production" \

 BUNDLE_DEPLOYMENT="1" \

 BUNDLE_PATH="/usr/local/bundle" \

 BUNDLE_WITHOUT="development"

Base Image: We start with a base image for Ruby. The version is specified using

the ARG RUBY_VERSION argument, allowing flexibility if you need to change the

Ruby version.

Working Directory: The WORKDIR /rails command sets the working directory

inside the container to /rails , where our Rails application will reside.

Environment Variables:

RAILS_ENV="production" : Sets the Rails environment to production.

BUNDLE_DEPLOYMENT="1" and BUNDLE_PATH="/usr/local/bundle" :

Configure Bundler to install gems in deployment mode and to a specific path.

BUNDLE_WITHOUT="development" : Excludes the development group from the

bundle install.

23/03/2025, 01:45

Page 43 of 119

Build Stage

Throw-away build stage to reduce size of final image

FROM base as build

Install packages needed to build gems

RUN apt-get update -qq && \

 apt-get install --no-install-recommends -y build-essential git

libpq-dev libvips pkg-config

Install application gems

COPY Gemfile Gemfile.lock ./

Use secret to access GitHub token to install private packages

RUN --mount=type=secret,id=GITHUB_TOKEN \

 GITHUB_TOKEN=${GITHUB_TOKEN} && \

 git config --global

url."https://${GITHUB_TOKEN}@github.com/".insteadOf

"https://github.com/" && \

 bundle install && \

 rm -rf ~/.bundle/ "${BUNDLE_PATH}"/ruby/*/cache

"${BUNDLE_PATH}"/ruby/*/bundler/gems/*/.git && \

 bundle exec bootsnap precompile --gemfile

Copy application code

COPY . .

Precompile bootsnap code for faster boot times

RUN bundle exec bootsnap precompile app/ lib/

Precompiling assets for production without requiring secret

23/03/2025, 01:45

Page 44 of 119

RAILS_MASTER_KEY

RUN SECRET_KEY_BASE_DUMMY=1 ./bin/rails assets:precompile

Build Stage: This stage is used to build the application and its dependencies.

Install Packages: The RUN apt-get install command installs necessary

packages for building Ruby gems, such as build-essential , git , libpq-dev ,

libvips , and pkg-config .

Install Gems:

COPY Gemfile Gemfile.lock ./ : Copies the Gemfile and Gemfile.lock into

the container.

RUN --mount=type=secret,id=GITHUB_TOKEN ... bundle install : Uses a

GitHub token to install private gems, ensuring the token remains secret

during the build.

rm -rf ~/.bundle/ "${BUNDLE_PATH}"/ruby/*/cache

"${BUNDLE_PATH}"/ruby/*/bundler/gems/*/.git : Cleans up unnecessary

files to reduce the image size.

bundle exec bootsnap precompile --gemfile : Precompiles bootsnap code

for faster boot times.

Copy Application Code: COPY . . copies the entire application code into the

container.

Precompile Assets: Precompiles Rails assets for production without requiring the

master key by using a dummy key.

23/03/2025, 01:45

Page 45 of 119

Final Stage

Final stage for app image

FROM base

Install packages needed for deployment

RUN apt-get update -qq && \

 apt-get install --no-install-recommends -y curl libvips

postgresql-client && \

 rm -rf /var/lib/apt/lists /var/cache/apt/archives

Copy built artifacts: gems, application

COPY --from=build /usr/local/bundle /usr/local/bundle

COPY --from=build /rails /rails

Run and own only the runtime files as a non-root user for security

RUN useradd rails --create-home --shell /bin/bash && \

 chown -R rails:rails db log storage tmp

USER rails:rails

Entrypoint prepares the database.

ENTRYPOINT ["/rails/bin/docker-entrypoint"]

Start the server by default, this can be overwritten at runtime

EXPOSE 3000

CMD ["./bin/rails", "server"]

Final Stage: This stage creates the final image that will be used to run the

application.

Install Deployment Packages: Installs necessary packages for running the Rails

application, such as curl , libvips , and postgresql-client .

23/03/2025, 01:45

Page 46 of 119

Copy Artifacts: Copies the built artifacts (gems and application code) from the

build stage to the final image.

Set Up User and Permissions:

useradd rails --create-home --shell /bin/bash : Adds a non-root user

named rails for security.

chown -R rails:rails db log storage tmp : Changes ownership of

important directories to the rails user.

USER rails:rails : Switches to the rails user for running the application.

Entrypoint and CMD:

ENTRYPOINT ["/rails/bin/docker-entrypoint"] : Sets the entrypoint script

to prepare the database.

EXPOSE 3000 : Exposes port 3000 for the application.

CMD ["./bin/rails", "server"] : Starts the Rails server by default.

Running Your Rails App with Docker

Now that we’ve modified our Dockerfile, let’s build and run our Docker containers

locally.

1. Build the Docker Image:

GITHUB_TOKEN=<my-token> docker buildx build --secret
id=GITHUB_TOKEN -t pirate_app .

2. Run the Docker Container:

docker run -e SECRET_KEY_BASE=<my-key> -p 3000:3000
pirate_app

Yer Rails application should now be built into a Docker container. However, since our

application relies on PostgreSQL, it won’t be runnin’ properly just yet. In the next

chapter, we’ll dive into Docker Compose to orchestrate multiple services, including our

Rails app and PostgreSQL database.

23/03/2025, 01:45

Page 47 of 119

Summary

Ye’ve successfully explored the provided Dockerfile for yer Rails application, made

necessary modifications to handle private package installations, and run yer application

within a Docker container. With Docker as yer ship, ye be ready to navigate the seas of

deployment and beyond!

Next Steps

In the next chapter, we’ll dive into Docker Compose, coordinatin’ multiple services like a

true pirate captain. We’ll set up a docker-compose.yml file, configure services for Rails,

PostgreSQL, and Redis, and manage environment variables. Stay the course, and ye’ll

be a Rails and DevOps pirate in no time!

Chapter 4: Docker Compose – Coordinating

Your Fleet

Introduction to Docker Compose

Docker Compose is a tool for defining and running multi-container Docker applications.

With Compose, you use a YAML file to configure your application’s services. Then, with

a single command, you create and start all the services from your configuration. This

simplifies orchestration, streamlines the development process, and ensures consistency

across different stages of development and deployment.

Setting Up Docker Compose

Docker Compose uses a docker-compose.yml file to define and configure multiple

services. We’ll set up a multi-service application for Rails and PostgreSQL. Additionally,

we’ll handle environment variables securely using .env files.

23/03/2025, 01:45

Page 48 of 119

Writing a docker-compose.yml File for a Multi-Service

Application

To manage your development environment effectively, we’ll create a docker-

compose.yml file. This file will configure services for Rails, PostgreSQL, and handle

secrets securely.

Why the Original Dockerfile is Suitable for Production

The original Dockerfile is optimized for production environments:

Multi-stage builds: This reduces the size of the final image by only including

necessary artifacts.

Environment-specific configurations: Ensures the environment variables are set

for production.

Security considerations: Runs the application as a non-root user.

Here’s the production Dockerfile:

23/03/2025, 01:45

Page 49 of 119

syntax=docker/dockerfile:1

Make sure RUBY_VERSION matches the Ruby version in .ruby-version

and Gemfile

ARG RUBY_VERSION=3.3.0

FROM registry.docker.com/library/ruby:$RUBY_VERSION-slim AS base

Rails app lives here

WORKDIR /rails

Set production environment

ENV RAILS_ENV="production" \

 BUNDLE_DEPLOYMENT="1" \

 BUNDLE_PATH="/usr/local/bundle" \

 BUNDLE_WITHOUT="development"

Throw-away build stage to reduce size of final image

FROM base AS build

Install packages needed to build gems

RUN apt-get update -qq && \

 apt-get install --no-install-recommends -y build-essential git

libpq-dev libvips pkg-config

Install application gems

COPY Gemfile Gemfile.lock ./

Use secret to access GitHub token

RUN --mount=type=bind,target=. \

 --mount=type=secret,id=GITHUB_TOKEN \

 GITHUB_TOKEN=$(cat /run/secrets/GITHUB_TOKEN) && \

 git config --global

23/03/2025, 01:45

Page 50 of 119

url."https://${GITHUB_TOKEN}@github.com/".insteadOf

"https://github.com/" && \

 bundle install && \

 rm -rf ~/.bundle/ "${BUNDLE_PATH}"/ruby/*/cache

"${BUNDLE_PATH}"/ruby/*/bundler/gems/*/.git && \

 bundle exec bootsnap precompile --gemfile

Copy application code

COPY . .

Precompile bootsnap code for faster boot times

RUN bundle exec bootsnap precompile app/ lib/

Precompiling assets for production without requiring secret

RAILS_MASTER_KEY

RUN SECRET_KEY_BASE_DUMMY=1 ./bin/rails assets:precompile

Final stage for app image

FROM base

Install packages needed for deployment

RUN apt-get update -qq && \

 apt-get install --no-install-recommends -y curl libvips

postgresql-client && \

 rm -rf /var/lib/apt/lists /var/cache/apt/archives

Copy built artifacts: gems, application

COPY --from=build /usr/local/bundle /usr/local/bundle

COPY --from=build /rails /rails

Run and own only the runtime files as a non-root user for security

RUN useradd rails --create-home --shell /bin/bash && \

 chown -R rails:rails db log storage tmp

23/03/2025, 01:45

Page 51 of 119

USER rails:rails

Entrypoint prepares the database.

ENTRYPOINT ["/rails/bin/docker-entrypoint"]

Start the server by default, this can be overwritten at runtime

EXPOSE 3000

CMD ["./bin/rails", "server"]

Why We Need a Separate Dockerfile for Development

Using the same Dockerfile for both production and development can lead to

inefficiencies and complexities. The development Dockerfile (Dockerfile.dev) is

optimized for:

Rapid Iteration: Allows for quick rebuilding and live code reloading.

Development Tools: Includes tools and dependencies needed for development,

not required in production.

Here’s the development Dockerfile:

23/03/2025, 01:45

Page 52 of 119

Dockerfile.dev

syntax=docker/dockerfile:1

ARG RUBY_VERSION=3.3.0

FROM registry.docker.com/library/ruby:$RUBY_VERSION-slim AS base

WORKDIR /rails

Set development environment

ENV RAILS_ENV="development" \

 BUNDLE_PATH="/usr/local/bundle" \

Install packages needed to build gems and development tools

RUN apt-get update -qq && \

 apt-get install --no-install-recommends -y build-essential git

libpq-dev libvips pkg-config nodejs yarn

Copy only the Gemfiles for installing gems

COPY Gemfile Gemfile.lock ./

Use secret to access GitHub token for private repositories and

install gems

RUN --mount=type=secret,id=GITHUB_TOKEN \

 GITHUB_TOKEN=$(cat /run/secrets/GITHUB_TOKEN) && \

 git config --global

url."https://${GITHUB_TOKEN}@github.com/".insteadOf

"https://github.com/" && \

 bundle install

Copy the rest of the application code

COPY . .

23/03/2025, 01:45

Page 53 of 119

Precompile bootsnap code for faster boot times

RUN bundle exec bootsnap precompile app/ lib/

Start the server by default

EXPOSE 3000

CMD ["./bin/rails", "server", "-b", "0.0.0.0"]

Writing the docker-compose.yml File

The docker-compose.yml file coordinates multiple services needed for the application.

Here’s the complete file, which includes configurations for the Rails app and

PostgreSQL:

23/03/2025, 01:45

Page 54 of 119

services:
 app:
 build:
 context: .
 dockerfile: Dockerfile.dev
 secrets:
 - GITHUB_TOKEN
 environment:
 DATABASE_URL:
postgres://postgres:postgres@db:5432/pirate_app_development
 ports:
 - "3000:3000"
 volumes:
 - .:/rails
 depends_on:
 - db

 db:
 image: postgres:16
 environment:
 POSTGRES_USER: postgres
 POSTGRES_PASSWORD: postgres
 POSTGRES_DB: pirate_app_development
 volumes:
 - db_data:/var/lib/postgresql/data

secrets:
 GITHUB_TOKEN:
 environment: GITHUB_TOKEN

volumes:
 db_data:

Managing Environment Variables

Using .env files for environment-specific configurations helps in maintaining different

settings for development and production environments. Docker Compose automatically

23/03/2025, 01:45

Page 55 of 119

reads the .env file located in the same directory as the docker-compose.yml file and

uses the variables defined within it.

Ensure your .env file contains the necessary environment variables:

.env
GITHUB_TOKEN=<your-github-token>
SECRET_KEY_BASE=<your-secret-key-base>

Running the Development Environment with Docker

Compose

With the docker-compose.yml and .env files set up, you can build and run the

development environment using Docker Compose.

To build the services:

docker compose build

To start the services:

docker compose up

Note: Use docker compose up -d to run the application in the background.

Summary

Production Dockerfile: Optimized for production with multi-stage builds, security

considerations, and environment-specific configurations.

Development Dockerfile (Dockerfile.dev): Tailored for development with

necessary development tools and rapid iteration support.

Docker Compose: Simplifies the orchestration of the development environment,

ensuring consistency and ease of setup.

23/03/2025, 01:45

Page 56 of 119

Environment Variables: Managed using an .env file for secure and environment-

specific configurations.

By following these instructions, you can effectively use Docker Compose to manage

your development environment, leveraging the power of Docker to ensure consistency

and ease of setup.

Chapter 5: Guarding Your Treasure – Using

Private Dependencies

Ahoy, me hearties! Now that we’ve set up our Rails application, it’s time to put our

private packages to use. This chapter covers integrating private Ruby gems and npm

packages into our Rails application.

Using Private Ruby Gems

Let’s use the private Ruby gem we created earlier in our Rails application (part of this

will already be done if you were following along).

1. Add the Gem to Your Gemfile:

gem 'my_private_gem', git: 'https://github.com/loftwah-
demo/my_private_gem.git'

2. Configure Bundler to Use the PAT:

bundle config https://github.com <your_github_token>

3. Install the Gem:

bundle install

23/03/2025, 01:45

Page 57 of 119

4. Use the Gem in Your Rails Application: In

app/controllers/application_controller.rb , add:

class ApplicationController < ActionController::Base
 def test_my_private_gem
 render plain: MyPrivateGem.hello
 end
end

5. Add a Route to Test the Gem: In config/routes.rb , add:

Rails.application.routes.draw do
 get 'test_my_private_gem', to:
'application#test_my_private_gem'
end

6. Verify the Gem is Working: Start your Rails server and navigate to

http://localhost:3000/test_my_private_gem . You should see:

Hello from MyPrivateGem!

Using Private npm Packages

Let’s integrate the private npm package into our Rails application.

1. Navigate to Your Rails Application Directory:

cd ../pirate_app

2. Create a package.json File (we may have already done this if you’re following

along):

23/03/2025, 01:45

Page 58 of 119

npm init -y

3. Update package.json to Include the Private Package:

{
 "name": "pirate_app",
 "version": "1.0.0",
 "dependencies": {
 "my-private-npm-package":
"git+https://github.com/loftwah-demo/my-private-npm-
package.git"
 }
}

4. Configure npm for Authentication: Create an .npmrc file in your Rails

application’s root directory:

//npm.pkg.github.com/:_authToken=${GITHUB_TOKEN}

5. Install the Dependencies:

npm install

Setting Up Vite for JavaScript Bundling

1. Install the vite_rails Gem:

Add the vite_rails gem to your Gemfile:

gem 'vite_rails'

23/03/2025, 01:45

Page 59 of 119

Then run bundle install :

bundle install

2. Install Vite with Rails:

Initialize Vite in your Rails application:

bundle exec vite install

Install npm dependencies and build the Vite project:

npm ci
npx vite build

3. Run Rails and Check:

Start the Rails server and Vite development server:

rails s
bin/vite dev

4. Shut Down Rails and Vite:

Before proceeding, shut down the Rails server and Vite development server by

pressing Ctrl+C in the terminal where they are running.

5. Install Foreman (Development Only):

Foreman is a tool to manage Procfile-based applications. Add it to your Gemfile for

the development group:

23/03/2025, 01:45

Page 60 of 119

group :development do
 gem 'foreman'
end

Then run bundle install :

bundle install

6. Set Up Procfile.dev :

If not already present, create a Procfile.dev in the root of your project directory

with the following content:

web: bin/rails server
css: bin/rails tailwindcss:watch
vite: bin/vite dev

7. Run Foreman:

Use Foreman to start all processes defined in Procfile.dev :

bin/bundle exec foreman start -f Procfile.dev

This will start your Rails server, Tailwind CSS watcher, and Vite development server all at

once, making your development workflow more efficient.

5. Shut Down Foreman:

Before proceeding, shut down Foreman and any running processes by pressing

Ctrl+C in the terminal where they are running.

6. Update docker-compose.yml :

To run the necessary processes using Docker, update your docker-compose.yml

file as follows:

23/03/2025, 01:45

Page 61 of 119

services:
 web:
 build:
 context: .
 dockerfile: Dockerfile.dev
 secrets:
 - GITHUB_TOKEN
 environment:
 SECRET_KEY_BASE: ${SECRET_KEY_BASE}
 DATABASE_URL:
postgres://postgres:postgres@db:5432/pirate_app_development
 ports:
 - "3000:3000"
 volumes:
 - .:/rails
 depends_on:
 - db
 command: bin/rails server -b 0.0.0.0

 vite:
 build:
 context: .
 dockerfile: Dockerfile.dev
 secrets:
 - GITHUB_TOKEN
 volumes:
 - .:/rails
 depends_on:
 - web
 command: bin/vite dev

 db:
 image: postgres:16
 environment:
 POSTGRES_USER: postgres
 POSTGRES_PASSWORD: postgres
 POSTGRES_DB: pirate_app_development
 volumes:
 - db_data:/var/lib/postgresql/data

23/03/2025, 01:45

Page 62 of 119

secrets:
 GITHUB_TOKEN:
 environment: GITHUB_TOKEN

volumes:
 db_data:

Note: I use foreman to develop locally and this is my preference, with

docker compose being a secondary option.

Summary

You’ve successfully set up Vite with Rails using the vite_rails gem and integrated

your development environment to use Docker for managing multiple processes. This

setup ensures that your JavaScript is bundled correctly and can take advantage of Vite’s

features.

Next Steps

In the next chapter, we’ll dive into secure authentication with SSH and HTTPS, managing

secrets, and using GitHub Personal Access Tokens (PATs) for secure access. Stay the

course, and you’ll be a Rails and DevOps expert in no time!

23/03/2025, 01:45

Page 63 of 119

Chapter 6: Secure Authentication with SSH

and HTTPS

Ahoy, Mateys! Welcome to the Treasure of Secure

Authentication

SSH Key Management

Setting up and Using SSH Keys in Docker

Arrr, ye landlubbers, we be needin’ to set sail with secure authentication using SSH keys

in Docker. Here be the steps to hoist the Jolly Roger and fetch private treasures

(repositories):

1. Generate an SSH Key: We be generatin’ a new key so we don’t mess with yer

existing id_rsa .

ssh-keygen -t rsa -b 4096 -f ~/.ssh/id_pirate_key -C
"your_email@example.com"

This command creates a new key pair (id_pirate_key and id_pirate_key.pub).

2. Add the SSH Key to Your SSH Agent: The SSH agent be a daemon that holds yer

private keys in memory. We be usin’ it so yer private keys don’t be needin’ to be

entered every time.

eval $(ssh-agent -s)
ssh-add ~/.ssh/id_pirate_key

3. Add Your SSH Key to GitHub: Copy the public key to yer clipboard and add it to

yer GitHub account.

23/03/2025, 01:45

Page 64 of 119

cat ~/.ssh/id_pirate_key.pub

Configuring SSH for Accessing Private Repositories

Swab the decks and prepare to clone private repositories using SSH mounts in Docker.

This be the Dockerfile we be usin’ to fetch our private treasures.

23/03/2025, 01:45

Page 65 of 119

Dockerfile for SSH Authentication

syntax=docker/dockerfile:1

Make sure RUBY_VERSION matches the Ruby version in .ruby-version

and Gemfile

ARG RUBY_VERSION=3.3.0

FROM registry.docker.com/library/ruby:$RUBY_VERSION-slim AS base

Rails app lives here

WORKDIR /rails

Set production environment

ENV RAILS_ENV="production" \

 BUNDLE_DEPLOYMENT="1" \

 BUNDLE_PATH="/usr/local/bundle" \

 BUNDLE_WITHOUT="development"

Throw-away build stage to reduce size of final image

FROM base AS build

Install packages needed to build gems

RUN apt-get update -qq && \

 apt-get install --no-install-recommends -y build-essential git

libpq-dev libvips pkg-config openssh-client

Add SSH key to the build environment

ADD id_pirate_key /root/.ssh/id_pirate_key

RUN chmod 600 /root/.ssh/id_pirate_key && \

 ssh-keyscan github.com >> /root/.ssh/known_hosts

Install application gems

23/03/2025, 01:45

Page 66 of 119

COPY Gemfile Gemfile.lock ./

Use SSH to access private GitHub repo

RUN --mount=type=ssh \

 GIT_SSH_COMMAND='ssh -i /root/.ssh/id_pirate_key' bundle install

&& \

 rm -rf ~/.bundle/ "${BUNDLE_PATH}"/ruby/*/cache

"${BUNDLE_PATH}"/ruby/*/bundler/gems/*/.git && \

 bundle exec bootsnap precompile --gemfile

Copy application code

COPY . .

Precompile bootsnap code for faster boot times

RUN bundle exec bootsnap precompile app/ lib/

Precompiling assets for production without requiring secret

RAILS_MASTER_KEY

RUN SECRET_KEY_BASE_DUMMY=1 ./bin/rails assets:precompile

Final stage for app image

FROM base

Install packages needed for deployment

RUN apt-get update -qq && \

 apt-get install --no-install-recommends -y curl libvips

postgresql-client && \

 rm -rf /var/lib/apt/lists /var/cache/apt/archives

Copy built artifacts: gems, application

COPY --from=build /usr/local/bundle /usr/local/bundle

COPY --from=build /rails /rails

23/03/2025, 01:45

Page 67 of 119

Run and own only the runtime files as a non-root user for security

RUN useradd rails --create-home --shell /bin/bash && \

 chown -R rails:rails db log storage tmp

USER rails:rails

Entrypoint prepares the database.

ENTRYPOINT ["/rails/bin/docker-entrypoint"]

Start the server by default, this can be overwritten at runtime

EXPOSE 3000

CMD ["./bin/rails", "server"]

Explanation

1. Generate and Add SSH Key: We create a new SSH key named id_pirate_key to

avoid conflicts with existing keys. This key be added to yer SSH agent for secure

use.

2. SSH Agent: The SSH agent keeps yer keys in memory, makin’ it easy to use ‘em

without repeatedly enterin’ the passphrase.

3. Dockerfile: We be usin’ an ADD command to include the SSH key in the Docker

build environment and RUN --mount=type=ssh to securely clone private

repositories.

Why Use SSH?

Alternative to PAT: While we typically use PATs for secure access, SSH keys offer

another method for those who prefer it.

Automation: Docker builds with SSH mounts allow seamless access to private

repositories without manual intervention.

With this knowledge, ye be ready to set sail with secure SSH authentication in Docker.

Remember, a true pirate guards his keys well and uses them wisely to fetch the richest

treasures from the seas of code!

Note: I tend to avoid using SSH in my Docker images and containers.

23/03/2025, 01:45

Page 68 of 119

Chapter 7: CI/CD – Automating Your

Deployment

Introduction to CI/CD

Ahoy, mateys! In this chapter, we’ll dive into the importance of Continuous Integration

(CI) and Continuous Deployment (CD). These practices ensure that your code is always

in a deployable state, making it easier to catch bugs early and deploy new features

quickly and reliably.

Why CI/CD?

Consistency: Ensures code changes are integrated and tested frequently.

Speed: Automates the deployment process, reducing manual effort and errors.

Quality: Enhances code quality through automated testing and validation.

Setting Up RSpec Locally

1. Add RSpec to your Gemfile :

group :development, :test do
 gem "rspec-rails"
end

group :test do
 gem "capybara"
 gem "selenium-webdriver"
 gem "factory_bot_rails"
 gem "faker"
end

2. Install the gems:

23/03/2025, 01:45

Page 69 of 119

bundle install

3. Generate RSpec configuration:

rails generate rspec:install

4. Run RSpec to ensure it’s set up correctly:

bundle exec rspec

Setting Up GitHub Actions for CI/CD

1. Create a GitHub Actions Workflow:

Create a new file in the .github/workflows directory named ci.yml .

2. Define the Workflow for Testing:

23/03/2025, 01:45

Page 70 of 119

name: CI

on:
 push:
 branches:
 - main
 pull_request:
 branches:
 - main

jobs:
 test:
 runs-on: ubuntu-latest

 services:
 postgres:
 image: postgres:16
 ports:
 - 5432:5432
 env:
 POSTGRES_DB: pirate_app_test
 POSTGRES_USER: postgres
 POSTGRES_PASSWORD: postgres

 steps:
 - uses: actions/checkout@v4

 - name: Set up Ruby
 uses: ruby/setup-ruby@v1
 with:
 ruby-version: 3.3.0

 - name: Install dependencies
 env:
 BUNDLE_GITHUB__COM: ${{ secrets.GH_PAT }}
 run: |
 gem install bundler
 bundle config set --local github.com "x-access-
token:${{ secrets.GH_PAT }}"
 bundle install

23/03/2025, 01:45

Page 71 of 119

 - name: Set up database
 run: |
 bundle exec rails db:create db:migrate
 env:
 RAILS_ENV: test
 POSTGRES_USER: postgres
 POSTGRES_PASSWORD: postgres

 - name: Run tests
 run: bundle exec rspec
 env:
 RAILS_ENV: test

3. Add GH_PAT as a Repository Secret:

Navigate to your GitHub repository.

Go to Settings > Secrets and variables > Actions .

Click New repository secret .

Name it GH_PAT and paste your personal access token.

Ensure the token has repo and package:read scopes.

Explanation

1. Create a GitHub Actions Workflow:

Create a new file named ci.yml in the .github/workflows directory.

2. Define the Workflow for Testing:

Use actions/checkout@v4 to ensure compatibility with the latest Node.js

versions.

Use ruby/setup-ruby@v1 to set up Ruby 3.3.0.

Use BUNDLE_GITHUB__COM environment variable to authenticate with the

personal access token (GH_PAT).

Install dependencies with bundle install .

Set up the database with bundle exec rails db:create db:migrate .

Run tests with bundle exec rspec .

3. Add GH_PAT as a Repository Secret:

23/03/2025, 01:45

Page 72 of 119

Ensure the personal access token has the necessary permissions and add it

as a secret to your repository.

By following these steps, you’ll ensure that your CI/CD pipeline is set up correctly to test

your Rails application with RSpec, and that your private gem repository is accessible

using the provided personal access token.

Best Practices for Secure and Efficient CI/CD Pipelines

Secrets Management: Store sensitive information like API keys and database

passwords securely using GitHub Secrets.

Environment Variables: Use environment variables for configuration settings.

Caching Dependencies: Cache dependencies to speed up the build process.

Deploying with GitHub Actions and DigitalOcean using

doctl

To automate the deployment of your Rails application, we’ll use doctl to manage

DigitalOcean and GitHub Actions to handle the deployment process.

Setting Up doctl for DigitalOcean

1. Install doctl :

On macOS:

brew install doctl

On Ubuntu:

snap install doctl

Download and install from GitHub for other systems.

2. Create a DigitalOcean API Token:

23/03/2025, 01:45

Page 73 of 119

https://github.com/digitalocean/doctl/releases

Go to the DigitalOcean API page and create a new token with read and write

access.

Save the token securely as it will be needed to authenticate doctl .

3. Authenticate doctl :

doctl auth init

Follow the prompts to enter your API token.

Generate SSH Keys:

If you don’t already have SSH keys, you can generate them using the following

command:

ssh-keygen -t rsa -b 4096 -C "your_email@example.com"

Follow the prompts to save the keys in the default location (~/.ssh/id_rsa).

Add SSH Key to DigitalOcean:

doctl compute ssh-key import loftwah --public-key-file
~/.ssh/id_rsa.pub
➜ pirate_app git:(main) doctl compute ssh-key import loftwah
--public-key-file ~/.ssh/id_rsa.pub
ID Name FingerPrint
42754072 loftwah
76:a5:d8:77:d2:86:52:14:f7:ea:9b:b6:94:f2:b7:fc

Note: The ID from here is what you need below as .

Replace <KEY-NAME> with a name for your SSH key.

Create a Droplet:

23/03/2025, 01:45

Page 74 of 119

https://cloud.digitalocean.com/account/api/tokens

doctl compute droplet create <DROPLET-NAME> --region syd1 --
image ubuntu-22-04-x64 --size s-1vcpu-1gb --ssh-keys <SSH-
KEY-ID> --wait

Replace <DROPLET-NAME> with your desired droplet name.

Replace <SSH-KEY-ID> with your SSH key ID. You can find this by running

doctl compute ssh-key list .

doctl compute droplet create pirateapp --region syd1 --image
ubuntu-22-04-x64 --size s-1vcpu-1gb --ssh-keys 42754072 --
wait

It will give you the following output or you can use the below command to retrieve

the IP address if you need it.

 pirate_app git:(main) doctl compute droplet create
pirateapp --region syd1 --image ubuntu-22-04-x64 --size s-
1vcpu-1gb --ssh-keys 42754072 --wait
 ID Name Public IPv4 Private IPv4
Public IPv6 Memory VCPUs Disk Region Image
VPC UUID Status Tags
Features Volumes
 432279856 pirateapp 170.69.169.169 10.126.0.2
1024 1 25 syd1 Ubuntu 22.04 (LTS) x64
102fec11-b9ca-4d95-9870-9619086e2408 active
droplet_agent,private_networking

Retrieve Droplet IP:

doctl compute droplet list

Note down the IP address of your newly created droplet.

Delete your instance if you’re not ready to use it

23/03/2025, 01:45

Page 75 of 119

doctl compute droplet delete pirateapp -f

** If you are ready connect to the instance with SSH**

ssh -i ~/.ssh/id_rsa root@<your-ip>

Configuring Your Droplet for Docker

1. Connect to Your Droplet

ssh -i ~/.ssh/id_rsa root@<your-ip>

2. Update and Upgrade System

sudo apt-get update && sudo apt-get upgrade -y

23/03/2025, 01:45

Page 76 of 119

3. Install Docker Using the Script

Download the Docker installation script
curl -fsSL https://get.docker.com -o install-docker.sh

Verify the script's content (optional but recommended)
cat install-docker.sh

Run the script with --dry-run to verify the steps it executes
(optional)
sh install-docker.sh --dry-run

Run the script to install Docker
sudo sh install-docker.sh

4. Start Docker and Enable on Boot

sudo systemctl start docker
sudo systemctl enable docker

5. Add Your User to Docker Group

sudo usermod -aG docker ${USER}
su - ${USER}

6. Verify Installations

Check Docker
docker --version
docker run hello-world

23/03/2025, 01:45

Page 77 of 119

Vite in Docker

If you have been following along we have broken our Dockerfile for production. I will

go through and figure this out but for now we will have this section that explains what

we need for it to build properly for Vite. Please update your Dockerfile to the

following.

23/03/2025, 01:45

Page 78 of 119

syntax=docker/dockerfile:1

Make sure RUBY_VERSION matches the Ruby version in .ruby-version

and Gemfile

ARG RUBY_VERSION=3.3.0

FROM registry.docker.com/library/ruby:$RUBY_VERSION-slim AS base

Rails app lives here

WORKDIR /rails

Set production environment

ENV RAILS_ENV="production" \

 BUNDLE_DEPLOYMENT="1" \

 BUNDLE_PATH="/usr/local/bundle" \

 BUNDLE_WITHOUT="development"

Throw-away build stage to reduce size of final image

FROM base AS build

Install packages needed to build gems and Node.js

RUN apt-get update -qq && \

 apt-get install --no-install-recommends -y build-essential git

libpq-dev libvips pkg-config curl && \

 curl -fsSL https://deb.nodesource.com/setup_20.x | bash - && \

 apt-get install --no-install-recommends -y nodejs

Install application gems

COPY Gemfile Gemfile.lock ./

Use secret to access GitHub token

RUN --mount=type=bind,target=. \

 --mount=type=secret,id=GITHUB_TOKEN \

23/03/2025, 01:45

Page 79 of 119

 GITHUB_TOKEN=$(cat /run/secrets/GITHUB_TOKEN) && \

 git config --global

url."https://${GITHUB_TOKEN}@github.com/".insteadOf

"https://github.com/" && \

 bundle install && \

 rm -rf ~/.bundle/ "${BUNDLE_PATH}"/ruby/*/cache

"${BUNDLE_PATH}"/ruby/*/bundler/gems/*/.git && \

 bundle exec bootsnap precompile --gemfile

Install Node.js packages

COPY package.json package-lock.json ./

RUN npm install

Copy application code

COPY . .

Run Vite build

RUN npx vite build

Precompile bootsnap code for faster boot times

RUN bundle exec bootsnap precompile app/ lib/

Precompiling assets for production without requiring secret

RAILS_MASTER_KEY

RUN SECRET_KEY_BASE_DUMMY=1 ./bin/rails assets:precompile

Final stage for app image

FROM base

Install packages needed for deployment

RUN apt-get update -qq && \

 apt-get install --no-install-recommends -y curl libvips

postgresql-client && \

23/03/2025, 01:45

Page 80 of 119

 rm -rf /var/lib/apt/lists /var/cache/apt/archives

Copy built artifacts: gems, application

COPY --from=build /usr/local/bundle /usr/local/bundle

COPY --from=build /rails /rails

Run and own only the runtime files as a non-root user for security

RUN useradd rails --create-home --shell /bin/bash && \

 chown -R rails:rails db log storage tmp

USER rails:rails

Entrypoint prepares the database.

ENTRYPOINT ["/rails/bin/docker-entrypoint"]

Start the server by default, this can be overwritten at runtime

EXPOSE 3000

CMD ["./bin/rails", "server"]

Setting Up Docker Compose

Instead of running on the system directly we can run the application using Docker

Compose. Create a docker-compose.yml file in your application directory:

Note: This is on the droplet you will be deploying to.

23/03/2025, 01:45

Page 81 of 119

services:
 db:
 image: postgres:16
 volumes:
 - postgres_data:/var/lib/postgresql/data
 environment:
 POSTGRES_DB: pirate_app_production
 POSTGRES_USER: pirate_app
 POSTGRES_PASSWORD: ${PIRATE_APP_DATABASE_PASSWORD}

 redis:
 image: redis:7

 web:
 build: .
 command: bundle exec rails server -b 0.0.0.0
 volumes:
 - .:/rails
 ports:
 - "80:3000"
 environment:
 RAILS_ENV: production
 SECRET_KEY_BASE: ${SECRET_KEY_BASE}
 DATABASE_URL:
postgres://pirate_app:${PIRATE_APP_DATABASE_PASSWORD}@db:5432/pira
te_app_production
 REDIS_URL: redis://redis:6379/1
 depends_on:
 - db
 - redis

volumes:
 postgres_data:

Setting Up GitHub Actions

Create a GitHub Actions workflow file (e.g., .github/workflows/deploy.yml):

23/03/2025, 01:45

Page 82 of 119

name: Deploy

on:
 workflow_run:
 workflows: ["CI"]
 types:
 - completed

jobs:
 deploy:
 runs-on: ubuntu-latest
 if: ${{ github.event.workflow_run.conclusion == 'success' }}

 steps:
 - name: Checkout code
 uses: actions/checkout@v4

 - name: Set up Docker Buildx
 uses: docker/setup-buildx-action@v2

 - name: Login to GitHub Container Registry
 uses: docker/login-action@v2
 with:
 registry: ghcr.io
 username: ${{ github.actor }}
 password: ${{ secrets.GH_PAT }}

 - name: Build and push Docker image
 run: |
 echo "${{ secrets.GH_PAT }}" | docker login ghcr.io -u
${{ github.actor }} --password-stdin
 GITHUB_TOKEN=${{ secrets.GH_PAT }} docker buildx build -
-secret id=GITHUB_TOKEN -t ghcr.io/loftwah-
demo/pirate_app/pirateapp:latest --push .

 - name: Deploy to droplet
 uses: appleboy/ssh-action@master
 with:
 host: 170.64.189.40
 username: root

23/03/2025, 01:45

Page 83 of 119

 key: ${{ secrets.DROPLET_SSH_PRIVATE_KEY }}
 script: |
 echo "${{ secrets.GH_PAT }}" | docker login ghcr.io -u
${{ github.actor }} --password-stdin
 docker compose -f /root/docker-compose.prod.yml --env-
file /root/.env down
 docker compose -f /root/docker-compose.prod.yml --env-
file /root/.env pull
 docker compose -f /root/docker-compose.prod.yml --env-
file /root/.env up -d

Setting Up Environment Variables in GitHub Secrets

Add the following secrets to your GitHub repository:

GH_PAT

DROPLET_SSH_PRIVATE_KEY

PIRATE_APP_DATABASE_PASSWORD

SECRET_KEY_BASE

How to Add Secrets:

GITHUB_TOKEN:

1. Go to your GitHub profile.

2. Navigate to Settings > Developer settings > Personal access tokens.

3. Generate a new token with repo and write:packages permissions.

4. Copy the token and add it as a secret in your repository settings.

DIGITALOCEAN_API_TOKEN:

1. Go to the DigitalOcean API page and create a new token.

2. Copy the token and add it as a secret in your repository settings.

DIGITALOCEAN_SSH_KEY_ID:

1. Add the public key to your DigitalOcean account under Security > SSH Keys.

2. Retrieve the key ID using doctl compute ssh-key list .

3. Add the key ID as a secret in your repository settings.

23/03/2025, 01:45

Page 84 of 119

https://cloud.digitalocean.com/account/api/tokens

Note: Your application should be deployed but because we deployed the

production environment we require a secure connection. You can modify the

Rails config in your application if you want to see this in

config/environments/production.rb where you need to change

config.force_ssl = false . For info: I ended up updating this in my repo

because it is only a demo application and who cares right? We can still set up

SSL with this set to false .

Summary

By following these steps, you can set up a CI/CD pipeline with GitHub Actions and

automate the deployment of your Rails application on DigitalOcean using doctl and

GitHub Container Registry. This approach simplifies the deployment process, making it

easier to manage infrastructure and deploy updates efficiently. Happy sailing, and may

your deployments be swift and smooth!

Chapter 8: Advanced Docker Techniques

Ahoy, Mateys! The Secrets of Multi-Stage Builds

Benefits of Multi-Stage Builds for Docker Images

Arrr, ye scallywags, gather ‘round and lend an ear! The seas be rough, and our ship

must be lean and mean. Multi-stage builds be our secret weapon, a true marvel of

Docker wizardry. By breakin’ down our build into stages, we be savin’ space and keepin’

our final image as trim as a corsair’s blade. No more bloatin’ with unnecessary artifacts,

aye, just the essentials to sail smooth and fast.

Implementin’ Multi-Stage Builds in Your Dockerfile

To start, ye be needin’ a Dockerfile more cunning than a fox in a henhouse. First, we be

usin’ one stage to build our treasures, then another to copy only the finest loot into our

final image. Here be an example from the ship’s log:

23/03/2025, 01:45

Page 85 of 119

syntax=docker/dockerfile:1

Make sure RUBY_VERSION matches the Ruby version in .ruby-version

and Gemfile

ARG RUBY_VERSION=3.3.0

FROM registry.docker.com/library/ruby:$RUBY_VERSION-slim AS base

Rails app lives here

WORKDIR /rails

Set production environment

ENV RAILS_ENV="production" \

 BUNDLE_DEPLOYMENT="1" \

 BUNDLE_PATH="/usr/local/bundle" \

 BUNDLE_WITHOUT="development"

Throw-away build stage to reduce size of final image

FROM base AS build

Install packages needed to build gems and Node.js

RUN apt-get update -qq && \

 apt-get install --no-install-recommends -y build-essential git

libpq-dev libvips pkg-config curl && \

 curl -fsSL https://deb.nodesource.com/setup_20.x | bash - && \

 apt-get install --no-install-recommends -y nodejs

Install application gems

COPY Gemfile Gemfile.lock ./

Use secret to access GitHub token

RUN --mount=type=bind,target=. \

 --mount=type=secret,id=GITHUB_TOKEN \

23/03/2025, 01:45

Page 86 of 119

 GITHUB_TOKEN=$(cat /run/secrets/GITHUB_TOKEN) && \

 git config --global

url."https://${GITHUB_TOKEN}@github.com/".insteadOf

"https://github.com/" && \

 bundle install && \

 rm -rf ~/.bundle/ "${BUNDLE_PATH}"/ruby/*/cache

"${BUNDLE_PATH}"/ruby/*/bundler/gems/*/.git && \

 bundle exec bootsnap precompile --gemfile

Install Node.js packages

COPY package.json package-lock.json ./

RUN npm install

Copy application code

COPY . .

Run Vite build

RUN npx vite build

Precompile bootsnap code for faster boot times

RUN bundle exec bootsnap precompile app/ lib/

Precompiling assets for production without requiring secret

RAILS_MASTER_KEY

RUN SECRET_KEY_BASE_DUMMY=1 ./bin/rails assets:precompile

Final stage for app image

FROM base

Install packages needed for deployment

RUN apt-get update -qq && \

 apt-get install --no-install-recommends -y curl libvips

postgresql-client && \

23/03/2025, 01:45

Page 87 of 119

 rm -rf /var/lib/apt/lists /var/cache/apt/archives

Copy built artifacts: gems, application

COPY --from=build /usr/local/bundle /usr/local/bundle

COPY --from=build /rails /rails

Run and own only the runtime files as a non-root user for security

RUN useradd rails --create-home --shell /bin/bash && \

 chown -R rails:rails db log storage tmp

USER rails:rails

Entrypoint prepares the database.

ENTRYPOINT ["/rails/bin/docker-entrypoint"]

Start the server by default, this can be overwritten at runtime

EXPOSE 3000

CMD ["./bin/rails", "server"]

Build command

GITHUB_TOKEN=<my-token> docker buildx build --secret id=GITHUB_TOKEN

-t pirate_app .

Run command

docker run -e SECRET_KEY_BASE=<my-key> -p 3000:3000 pirate_app

With this strategy, our final image be as swift as a schooner, ready to plunder the seven

seas!

Docker Volumes and Networks: Keepin’ Our Booty Safe

and Secure

Managing Data Persistence with Docker Volumes

23/03/2025, 01:45

Page 88 of 119

Aye, the life of a pirate be full of treasures, and we must keep ‘em safe! Docker volumes

be our chests to store precious data. They be independent of the container lifecycle, so

our treasures don’t disappear into the briny deep when a container meets Davy Jones.

Here’s how ye be creatin’ a volume:

docker volume create my_volume

Mount it in yer container like so:

docker run -v my_volume:/path/in/container my_image

Now, our loot be safe and sound, even if the seas get stormy!

Purging Data and Considerations

But beware, ye don’t want to be caught with too much ballast! When the time comes to

purge old data, make sure ye know what ye be doin’. Deleting a volume be permanent,

like sendin’ it to the depths of the ocean. To remove a volume:

docker volume rm my_volume

Think twice before ye hit that command, or ye might be losin’ vital booty.

Configurin’ Docker Networks for Inter-Container Communication

To navigate the vast waters of inter-container communication, Docker networks be our

charts and compass. Ye can set up a bridge network for yer containers to talk like old

sea dogs:

docker network create my_network

Run yer containers on this network:

23/03/2025, 01:45

Page 89 of 119

docker run --network my_network --name container_one my_image
docker run --network my_network --name container_two my_image

Now, container_one and container_two be chattin’ like old mates in a tavern, sharin’

secrets and plans for their next big raid.

So there ye have it, me hearties! Master these advanced Docker techniques, and ye’ll be

the scourge of the seven seas, feared by all and master of your digital domain! Arrr!

Chapter 9: Monitoring and Scaling Your

Application

Avast, Me Hearties! Application Monitoring on the High

Seas

Tools and Techniques for Monitoring a Rails Application

Ahoy, ye salty dogs! Keepin’ a sharp eye on yer Rails application be as crucial as

watchin’ the horizon for enemy ships. Here be a list of fine tools to help ye monitor the

health and performance of yer app:

Raygun: Catch errors and crashes faster than a cannonball flyin’ across the deck.

Raygun gives ye detailed reports on where yer app be takin’ on water.

Honeybadger: Another trusty tool for error trackin’, Honeybadger also keeps an

eye on uptime and alertin’ ye when things go awry.

Axiom: For log aggregation and analysis, Axiom be the tool to gather all yer logs

into one treasure chest for easy searchin’ and visualizin’.

Datadog: A full fleet of monitorin’ services, includin’ metrics, traces, and logs.

Datadog helps ye keep tabs on every corner of yer app.

Vector: A log processor that sails smoothly, collectin’, processin’, and transportin’

yer logs to where they need to be.

Settin’ up these tools be a task for a seasoned quartermaster. Configure ‘em properly to

ensure they be reportin’ accurate and useful information.

23/03/2025, 01:45

Page 90 of 119

Logging at the Application and System Level

Loggin’ be the ship’s log of yer application. At the application level, log errors, warnings,

and key events to understand the state of yer app. System-level logging captures

events at the OS level, such as resource usage and network activity. Together, they

paint a full picture of yer ship’s health.

Rails example for logging
Rails.logger.info "Shiver me timbers! This be a log message."

Scaling with Docker and Cloud: Unfurl the Sails!

Strategies for Scaling Your Application Using Docker and Cloud Services

Scalin’ yer application be like addin’ more sails to catch the wind. Docker and cloud

services be the wind in those sails, helpin’ ye handle more traffic without capsizin’. Here

be some strategies:

Container Orchestration: Tools like Kubernetes and Docker Swarm manage yer

fleet of containers, deployin’ and scalin’ ‘em as needed.

Load Balancin’: Distribute incoming requests across multiple containers or

instances to ensure smooth sailin’.

Microservices: Break yer monolithic application into smaller services that can be

scaled independently.

Here be an example of a docker-compose.yml file that scales yer Rails app with

PostgreSQL and Redis:

23/03/2025, 01:45

Page 91 of 119

services:
 db:
 image: postgres:16
 volumes:
 - postgres_data:/var/lib/postgresql/data
 environment:
 POSTGRES_DB: pirate_app_production
 POSTGRES_USER: pirate_app
 POSTGRES_PASSWORD: ${PIRATE_APP_DATABASE_PASSWORD}
 ports:
 - "5432:5432"

 redis:
 image: redis:7
 ports:
 - "6379:6379"

 web:
 build: .
 command: bundle exec rails server -b 0.0.0.0
 volumes:
 - .:/rails
 ports:
 - "3000:3000"
 environment:
 RAILS_ENV: production
 SECRET_KEY_BASE: ${SECRET_KEY_BASE}
 DATABASE_URL:
postgres://pirate_app:${PIRATE_APP_DATABASE_PASSWORD}@db:5432/pira
te_app_production
 REDIS_URL: redis://redis:6379/1
 depends_on:
 - db
 - redis

volumes:
 postgres_data:

Auto-Scaling and Load Balancin’ Considerations

23/03/2025, 01:45

Page 92 of 119

Auto-scaling keeps yer ship ready for any storm, addin’ or removin’ resources based on

demand. Cloud providers like AWS, Azure, and Google Cloud offer auto-scaling

services. Configure yer auto-scaling policies to match yer needs, considerin’ metrics

like CPU usage, memory, and request count.

Load balancers be the helmsmen, directin’ traffic to ensure no single container be

overwhelmed. Configure health checks to ensure only healthy containers receive traffic.

Configurin’ Instance Sizes, CPU Specs, Storage, etc.

Choose the right instance sizes for yer needs. Consider CPU, memory, and storage

requirements:

CPU and Memory: Choose instances with enough CPU and memory to handle yer

application’s load. Use tools like AWS EC2, Azure VM, or Google Compute Engine.

Storage: Ensure ye have enough storage for yer data. Consider using cloud

storage solutions like AWS S3, Azure Blob Storage, or Google Cloud Storage.

Networking: Configure virtual private clouds (VPCs) and subnets for secure and

efficient communication between yer instances.

With these techniques, ye’ll be ready to scale yer application like a true captain of the

digital seas, conquerin’ new lands and servin’ more users without fear! Arrr!

Chapter 10: Security Best Practices

Avast, Me Hearties! Securing Your Docker Containers

Common Security Vulnerabilities and How to Mitigate Them

In the treacherous waters ye must guard yer Docker containers against scallywags and

marauders. Here be the most common vulnerabilities and how ye can fortify yer

defenses:

Outdated Images: Keep yer base images up to date. Use trusted sources and

scan for vulnerabilities with tools like Anchore or Trivy.

23/03/2025, 01:45

Page 93 of 119

docker scan my_image

Unnecessary Privileges: Run containers with the least privilege necessary. Avoid

root user; create a dedicated user instead.

FROM registry.docker.com/library/ruby:3.3.0-slim

RUN useradd -m appuser
USER appuser

Unexposed Ports: Only expose the ports ye need. Unexposed ports be like open

portholes for enemies.

ports:
 - "3000:3000"

Secrets in Images: Never hardcode secrets in yer images. Use environment

variables or secrets management tools.

Managing Secrets and Sensitive Data

Best Practices for Handling Sensitive Information in Docker and CI/CD Pipelines

In the digital age of 2024, handling secrets be akin to guarding a treasure map. Here be

the best practices to ensure yer secrets stay secret:

Environment Variables: Store sensitive data in environment variables. Use .env

files and Docker secrets for better security.

docker run -e SECRET_KEY_BASE=${SECRET_KEY_BASE} my_app

Secrets Management Tools: Use tools like HashiCorp Vault, AWS Secrets

Manager, or Azure Key Vault to manage secrets securely.

23/03/2025, 01:45

Page 94 of 119

secrets:
 secret_key_base:
 file: ./secrets/secret_key_base

CI/CD Pipelines: Ensure that yer CI/CD pipelines are secure. Use built-in secrets

management in GitHub Actions, GitLab CI, or Jenkins.

jobs:
 deploy:
 secrets:
 SECRET_KEY_BASE: ${{ secrets.SECRET_KEY_BASE }}

Context-Specific Security Considerations

Security be not one-size-fits-all. Consider the context in which ye operate:

Public vs. Private Repositories: For public repositories, never store sensitive data

in code. For private repositories, still follow best practices to avoid leaks.

Compliance Requirements: Ensure ye meet industry-specific compliance, such

as GDPR for personal data or PCI DSS for payment information.

Network Security: Configure yer Docker networks to limit exposure. Use firewalls

and VPNs for additional layers of security.

networks:
 default:
 external:
 name: my_private_network

Monitoring and Auditing: Regularly monitor and audit yer containers and

systems. Use tools like Falco for runtime security monitoring.

With these best practices, yer Docker containers and sensitive data will be guarded like

the finest treasures in the pirate’s hold, safe from the hands of ne’er-do-wells and rival

captains. Arrr!

23/03/2025, 01:45

Page 95 of 119

Chapter 11: Troubleshooting and Debugging

Avast, Me Hearties! Common Issues and Solutions

Troubleshooting Common Problems in Dockerized Rails Applications

Even the finest ships encounter rough seas. Here be some common issues ye might

face with Dockerized Rails applications, along with solutions to keep yer vessel on

course:

Container Fails to Start: Check yer logs first and foremost. Use docker logs

<container_id> to see what be ailin’ yer container.

docker logs pirate_app

Database Connection Errors: Ensure that yer environment variables be correctly

set. Verify that the database service be up and accessible.

environment:
 DATABASE_URL:
postgres://pirate_app:${PIRATE_APP_DATABASE_PASSWORD}@db:5432
/pirate_app_production

Missing Gems or Node Modules: Double-check yer Dockerfile and ensure that

dependencies be properly installed.

COPY Gemfile Gemfile.lock ./

RUN bundle install
COPY package.json package-lock.json ./

RUN npm install

Slow Performance: Examine resource usage. Ensure containers have enough

CPU and memory. Use tools like Docker stats to monitor performance.

23/03/2025, 01:45

Page 96 of 119

docker stats

Debugging Techniques

Tools and Methods for Effective Debugging in a Docker Environment

Debugging be a critical skill for any pirate captain. Here be tools and techniques to help

ye navigate troubled waters:

Interactive Shell: Enter yer running container with an interactive shell to inspect

and debug.

docker exec -it pirate_app /bin/bash

Rails Console: Use the Rails console within the container to test and debug

application code.

docker exec -it pirate_app bundle exec rails console

Binding.pry: Use the pry gem for interactive debugging. Insert binding.pry in

yer code and restart the container.

gem 'pry'
In your code
binding.pry

Logs and Monitoring: Continuously monitor logs using tools like Logspout or

integrated logging services in AWS, Azure, or GCP.

docker logs -f pirate_app

23/03/2025, 01:45

Page 97 of 119

Debugger Tools: Leverage debuggers like Byebug or Pry-Byebug for more

advanced debugging capabilities.

gem 'byebug'
In your code
debugger

Health Checks: Implement health checks in yer Docker Compose file to

automatically restart unhealthy containers.

services:
 web:
 healthcheck:
 test: ["CMD", "curl", "-f", "http://localhost:3000"]
 interval: 1m30s
 timeout: 10s
 retries: 3

Network Debugging: Use tools like Wireshark or tcpdump to capture and

analyze network traffic within yer Docker network.

docker run --rm -it --network container:pirate_app
nicolaka/netshoot

With these techniques and tools, ye’ll be well-equipped to troubleshoot and debug yer

Dockerized Rails applications, ensuring smooth sailin’ on the high seas of development.

Arrr!

23/03/2025, 01:45

Page 98 of 119

Conclusion

Recap and Future Directions

Congratulations, mateys! Ye’ve sailed through the vast and turbulent seas of Docker and

Ruby on Rails, learnin’ the ins and outs of modern application deployment and

development. Here be a summary of the key takeaways from this adventure:

1. Setting Sail with Ruby on Rails: Ye set up a Rails application, configured it with

PostgreSQL and Tailwind CSS, and learned the project structure.

2. Docker – Yer Ship for the Journey: We explored Docker, wrote Dockerfiles, and

ran our Rails app in containers, understandin’ the importance of containerization.

3. Docker Compose – Coordinatin’ Yer Fleet: Ye configured Docker Compose to

manage multiple services, makin’ development and deployment more efficient.

4. Guardin’ Yer Treasure – Private Dependencies: Ye integrated private Ruby gems

and npm packages into yer Rails app, ensuring secure and modular code.

5. Secure Authentication with SSH and HTTPS: Ye set up SSH keys and GitHub

Personal Access Tokens (PATs) for secure access to private repositories.

6. Automatin’ Yer Deployment – CI/CD: Ye established a CI/CD pipeline with GitHub

Actions, deployin’ yer Rails application to DigitalOcean using doctl .

7. Advanced Docker Techniques: Ye learned about multi-stage builds, Docker

volumes, and networks, ensuring yer containers are efficient and secure.

8. Monitoring and Scaling Yer Application: Ye set up monitoring tools and

strategies for scaling yer application using Docker and cloud services.

9. Security Best Practices: Ye fortified yer Docker containers against vulnerabilities

and managed secrets securely in yer CI/CD pipelines.

10. Troubleshootin’ and Debuggin’: Ye tackled common issues in Dockerized Rails

applications and mastered debugging techniques to keep yer app shipshape.

23/03/2025, 01:45

Page 99 of 119

Next Steps for Continuous Learning

The journey doesn’t end here, mateys! The seas of technology are always changin’, and

it’s important to keep learnin’ and adaptin’. Here be some resources to help ye stay

updated and further yer knowledge:

1. Official Documentation:

Ruby on Rails Guides

Docker Documentation

GitHub Actions Documentation

2. Online Courses and Tutorials:

Udemy and Coursera offer courses on Docker, Rails, and DevOps.

Codecademy and freeCodeCamp have interactive tutorials.

3. Community and Forums:

Engage with the Rails, Docker, and DevOps communities on Stack Overflow,

Reddit, and GitHub Discussions.

4. Books and Publications:

“Docker Deep Dive” by Nigel Poulton

“Ruby on Rails Tutorial” by Michael Hartl

“The DevOps Handbook” by Gene Kim, Jez Humble, Patrick Debois, and

John Willis

5. Conferences and Meetups:

Attend conferences like DockerCon, RailsConf, and DevOpsDays to network

with experts and learn about the latest trends.

6. Practice and Projects:

Keep buildin’ projects, contributin’ to open-source, and experimentin’ with

new tools and techniques to refine yer skills.

23/03/2025, 01:45

Page 100 of 119

https://guides.rubyonrails.org/
http://localhost:50939/ruby-on-whales-pdf.md
https://docs.github.com/en/actions
https://www.udemy.com/
https://www.coursera.org/
https://www.codecademy.com/
https://www.freecodecamp.org/
https://stackoverflow.com/
https://www.reddit.com/r/rails/
https://github.com/orgs/community/discussions

Final Words

With this knowledge, ye’re equipped to conquer the digital seas, buildin’ robust and

scalable applications with Docker and Ruby on Rails. Keep explorin’, innovatin’, and sailin’

towards new horizons. May yer code be clean, yer deployments swift, and yer

adventures grand!

Fair winds and following seas, mateys! Arrr!

Appendices

Appendix A: Glossary of Terms

Docker: An open platform for developin’, shippin’, and runnin’ applications using

containerization.

Rails: A web application framework written in Ruby, designed for productivity and

simplicity.

CI/CD: Continuous Integration and Continuous Deployment, practices for

automatin’ the build, test, and deployment processes.

SSH: Secure Shell, a protocol for secure remote login and command execution.

PAT: Personal Access Token, a token used for authentication with GitHub and

other services.

Volume: A persistent storage mechanism in Docker, used to store data outside the

container lifecycle.

23/03/2025, 01:45

Page 101 of 119

Appendix B: Reference Configurations

Production Dockerfile

syntax=docker/dockerfile:1

ARG RUBY_VERSION=3.3.0

FROM registry.docker.com/library/ruby:$RUBY_VERSION-slim AS base

WORKDIR /rails

ENV RAILS_ENV="production" \

 BUNDLE_DEPLOYMENT="1" \

 BUNDLE_PATH="/usr/local/bundle" \

 BUNDLE_WITHOUT="development"

FROM base AS build

RUN apt-get update -qq && \

 apt-get install --no-install-recommends -y build-essential git

libpq-dev libvips pkg-config curl && \

 curl -fsSL https://deb.nodesource.com/setup_20.x | bash - && \

 apt-get install --no-install-recommends -y nodejs

COPY Gemfile Gemfile.lock ./

RUN --mount=type=bind,target=. \

 --mount=type=secret,id=GITHUB_TOKEN \

 GITHUB_TOKEN=$(cat /run/secrets/GITHUB_TOKEN) && \

 git config --global

url."https://${GITHUB_TOKEN}@github.com/".insteadOf

"https://github.com/" && \

23/03/2025, 01:45

Page 102 of 119

 bundle install && \

 rm -rf ~/.bundle/ "${BUNDLE_PATH}"/ruby/*/cache

"${BUNDLE_PATH}"/ruby/*/bundler/gems/*/.git && \

 bundle exec bootsnap precompile --gemfile

COPY package.json package-lock.json ./

RUN npm install

COPY . .

RUN npx vite build

RUN bundle exec bootsnap precompile app/ lib/

RUN SECRET_KEY_BASE_DUMMY=1 ./bin/rails assets:precompile

FROM base

RUN apt-get update -qq && \

 apt-get install --no-install-recommends -y curl libvips

postgresql-client && \

 rm -rf /var/lib/apt/lists /var/cache/apt/archives

COPY --from=build /usr/local/bundle /usr/local/bundle

COPY --from=build /rails /rails

RUN useradd rails --create-home --shell /bin/bash && \

 chown -R rails:rails db log storage tmp

USER rails:rails

ENTRYPOINT ["/rails/bin/docker-entrypoint"]

23/03/2025, 01:45

Page 103 of 119

EXPOSE 3000

CMD ["./bin/rails", "server"]

23/03/2025, 01:45

Page 104 of 119

Production docker-compose.yml

services:
 db:
 image: postgres:16
 volumes:
 - postgres_data:/var/lib/postgresql/data
 environment:
 POSTGRES_DB: pirate_app_production
 POSTGRES_USER: pirate_app
 POSTGRES_PASSWORD: ${PIRATE_APP_DATABASE_PASSWORD}
 ports:
 - "5432:5432"

 redis:
 image: redis:7
 ports:
 - "6379:6379"

 web:
 build: .
 command: bundle exec rails server -b 0.0.0.0
 volumes:
 - .:/rails
 ports:
 - "3000:3000"
 environment:
 RAILS_ENV: production
 SECRET_KEY_BASE: ${SECRET_KEY_BASE}
 DATABASE_URL:
postgres://pirate_app:${PIRATE_APP_DATABASE_PASSWORD}@db:5432/pira
te_app_production
 REDIS_URL: redis://redis:6379/1
 depends_on:
 - db
 - redis

volumes:
 postgres_data:

23/03/2025, 01:45

Page 105 of 119

Appendix C: Additional Resources

doctl: DigitalOcean CLI tool - Install Guide

Rails Guides: Comprehensive documentation for Ruby on Rails - Rails Guides

Docker Documentation: Official Docker documentation - Docker Docs

GitHub Actions Documentation: Learn how to set up CI/CD pipelines with GitHub

Actions - GitHub Actions Docs

Misc

I haven’t thought of the following or where to put them yet.

sidekiq and redis

setting up a local development environment (extend the initial part to cover

postgres and redis etc)

error handling and troubleshooting for each section and steps

ruby version, ruby versioning differences and things to watch out for think of

system dependencies

application dependencies

rails configuration

database creation

database initialization

how to set up and configure the test suite

how to run the test suite

services (job queues, cache servers, search engines, etc.)

deployment instructions

pointing a domain at the application with cloudflare for secure connection

vite-rails using deprecated CJS here

Load Testing

Stress (Linux)

A simple command-line tool to impose load on the system’s CPU, memory, and

disk I/O.

23/03/2025, 01:45

Page 106 of 119

https://docs.digitalocean.com/reference/doctl/how-to/install/
https://guides.rubyonrails.org/
http://localhost:50939/ruby-on-whales-pdf.md
https://docs.github.com/en/actions
https://github.com/ElMassimo/vite_ruby/issues/431

Application: Useful for stress testing the server infrastructure to observe system

behavior under high load.

Loadster (Service)

A cloud-based load testing service that simulates user traffic from multiple

locations.

Application: Effective for testing the performance and scalability of web

applications under real-world usage patterns.

k6 (Grafana Labs)

A modern load testing tool using JavaScript to write test scripts, integrated with

Grafana for monitoring.

Application: Ideal for continuous performance testing and monitoring, with the

ability to integrate into CI/CD pipelines for automated testing.

Upgrading the Landing Page for “Linux for

Pirates! 2 - Ruby on Whales” Book Promotion

I had to change the application JavaScript to import the stylesheet.

23/03/2025, 01:45

Page 107 of 119

// Configure your import map in config/importmap.rb. Read more:
https://github.com/rails/importmap-rails
import "../stylesheets/application.css";
// To see this message, add the following to the `<head>` section
in your
// views/layouts/application.html.erb
//
// <%= vite_client_tag %>
// <%= vite_javascript_tag 'application' %>
console.log("Vite ⚡️ Rails");

// If using a TypeScript entrypoint file:
// <%= vite_typescript_tag 'application' %>
//
// If you want to use .jsx or .tsx, add the extension:
// <%= vite_javascript_tag 'application.jsx' %>

console.log(
 "Visit the guide for more information: ",
 "https://vite-ruby.netlify.app/guide/rails"
);

// Example: Load Rails libraries in Vite.
//
// import * as Turbo from '@hotwired/turbo'
// Turbo.start()
//
// import ActiveStorage from '@rails/activestorage'
// ActiveStorage.start()
//
// // Import all channels.
// const channels = import.meta.globEager('./**/*_channel.js')

// Example: Import a stylesheet in app/frontend/index.css
// import '~/index.css'

I commented out everything in app/javascript/application.js .

23/03/2025, 01:45

Page 108 of 119

// Configure your import map in config/importmap.rb. Read more:
https://github.com/rails/importmap-rails
// import "@hotwired/turbo-rails"
// import "controllers"
// import './stylesheets/application.css'

Add PostCSS configuration:

// postcss.config.js
module.exports = {
 plugins: {
 tailwindcss: {},
 autoprefixer: {},
 },
};

Add Vite configuration with PostCSS plugins:

// vite.config.ts
import { defineConfig } from "vite";
import RubyPlugin from "vite-plugin-ruby";
import tailwindcss from "tailwindcss";
import autoprefixer from "autoprefixer";

export default defineConfig({
 plugins: [RubyPlugin()],
 css: {
 postcss: {
 plugins: [tailwindcss, autoprefixer],
 },
 },
 assetsInclude: ["**/*.png", "**/*.jpg", "**/*.jpeg", "**/*.gif",
"**/*.svg"],
});

In development, I set the following configurations:

23/03/2025, 01:45

Page 109 of 119

config/environments/development.rb
config.assets.quiet = false
config.assets.debug = true

The following stylesheet was missing and added:

/* pirate_app/app/javascript/stylesheets/application.css */
@import "tailwindcss/base";
@import "tailwindcss/components";
@import "tailwindcss/utilities";

Step 1: Organise Your Project Structure

Ensure your project structure under app/javascript looks like this:

app/javascript
├── images
│ ├── logo.png
│ ├── favicon.png
│ └── social-banner.png
├── entrypoints
│ ├── application.js
│ ├── application.css
│ └── main.js
├── styles
│ └── main.css
└── index.html

Step 2: Add Images

Place your images (e.g., logo, favicon, social banner) in the app/javascript/images

directory.

23/03/2025, 01:45

Page 110 of 119

Step 3: Update Vite Configuration

Ensure your vite.config.ts is set up correctly:

// vite.config.ts
import { defineConfig } from "vite";
import RubyPlugin from "vite-plugin-ruby";

export default defineConfig({
 plugins: [RubyPlugin()],
 assetsInclude: ["**/*.png", "**/*.jpg", "**/*.jpeg", "**/*.gif",
"**/*.svg"],
});

Step 4: Update Rails Layout

Update your application layout to include Vite tags and Open Graph meta tags.

23/03/2025, 01:45

Page 111 of 119

<!DOCTYPE html>
<html>
<head>
 <title>PirateApp</title>
 <%= csrf_meta_tags %>
 <%= csp_meta_tag %>

 <%= stylesheet_link_tag "application", "data-turbo-track":
"reload" %>
 <%= javascript_include_tag "application", "data-turbo-track":
"reload", defer: true %>
 <%= vite_client_tag %>
 <%= vite_javascript_tag 'application' %>

 <!-- Open Graph meta tags -->
 <meta property="og:title" content="Linux for Pirates! 2 - Ruby
on Whales" />
 <meta property="og:description" content="Embark on a Ruby
adventure with Linux for Pirates! 2 - Ruby on Whales. Learn Ruby
and conquer the seas!" />
 <meta property="og:image" content="<%= vite_asset_url
'images/pirate-adventure.png' %>" />
 <meta property="og:url" content="<%= request.original_url %>" />
 <meta name="twitter:card" content="summary_large_image" />
</head>

<body class="bg-blue-900 text-white">
 <header class="bg-gray-800 p-4">
 <div class="container mx-auto flex justify-between items-
center">
 <h1 class="text-2xl font-bold">PirateApp</h1>
 <nav>
 <ul class="flex space-x-4">
 Home

 </nav>
 </div>
 </header>
 <%= yield %>

23/03/2025, 01:45

Page 112 of 119

 <footer class="bg-gray-800 p-4 mt-10">
 <div class="container mx-auto text-center">
 <p>© 2024 PirateApp. All rights reserved.</p>
 </div>
 </footer>
</body>
</html>

Step 5: Update Your View

Update your view to include image tags and debug information.

23/03/2025, 01:45

Page 113 of 119

<!DOCTYPE html>
<html>
<head>
 <title>PirateApp</title>
</head>
<body>
 <h1>Home</h1>
 <p>Linux for Pirates! 2 - Ruby on Whales</p>
 <p>Embark on a Ruby adventure with Linux for Pirates! 2 - Ruby
on Whales. Learn Ruby and conquer the seas!</p>

 <!-- Print the asset path for debugging -->
 <p>Image Path: <%= vite_asset_path('images/book-cover.jpg') %>
</p>
 <p>Image Path: <%= vite_asset_path('images/pirate-
adventure.png') %></p>

 <!-- Display the images -->
 <%= image_tag vite_asset_path('images/book-cover.jpg') %>
 <%= image_tag vite_asset_path('images/pirate-adventure.png') %>

 <footer>
 <p>Pirate Adventure</p>
 Get Started
 <p>© 2024 PirateApp. All rights reserved.</p>
 </footer>
</body>
</html>

Step 6: Testing and Deployment

Run your Rails server and test the page locally to ensure everything is working as

expected. When you’re ready, deploy your application.

rails server

23/03/2025, 01:45

Page 114 of 119

This guide provides a comprehensive overview of upgrading your landing page to

promote “Linux for Pirates! 2 - Ruby on Whales” using Vite in a Rails application.

Note: There is still a warning in Tailwind but I can’t figure it out yet.

Updating package.json to Fix Deprecation

Warning

The Rails plugin for Vite generates a vite.config.ts that has been deprecated.

Instead of translating the configuration file, updating the package.json can resolve the

deprecation warning.

23/03/2025, 01:45

Page 115 of 119

https://github.com/ElMassimo/vite_ruby/issues/431

Original package.json

{
 "name": "pirate_app",
 "version": "1.0.0",
 "description": "This README would normally document whatever
steps are necessary to get the application up and running.",
 "main": "index.js",
 "directories": {
 "lib": "lib",
 "test": "test"
 },
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [],
 "author": "",
 "license": "ISC",
 "dependencies": {
 "autoprefixer": "^10.4.19",
 "my-private-npm-package": "git+https://github.com/loftwah-
demo/my-private-npm-package.git",
 "tailwindcss": "^3.4.4"
 },
 "devDependencies": {
 "vite": "^5.3.3",
 "vite-plugin-ruby": "^5.0.0"
 }
}

Updated package.json

To resolve the deprecation warning, add "type": "module" to your package.json .

23/03/2025, 01:45

Page 116 of 119

{
 "name": "pirate_app",
 "version": "1.0.0",
 "description": "This README would normally document whatever
steps are necessary to get the application up and running.",
 "main": "index.js",
 "type": "module",
 "directories": {
 "lib": "lib",
 "test": "test"
 },
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [],
 "author": "",
 "license": "ISC",
 "dependencies": {
 "autoprefixer": "^10.4.19",
 "my-private-npm-package": "git+https://github.com/loftwah-
demo/my-private-npm-package.git",
 "tailwindcss": "^3.4.4"
 },
 "devDependencies": {
 "vite": "^5.3.3",
 "vite-plugin-ruby": "^5.0.0"
 }
}

Enabling "type": "module" in package.json resolves the CJS deprecation warning.

Troubleshooting Errno::EACCES

The error Errno::EACCES indicates that there is a permissions issue when trying to

access a file or directory. In this case, it is related to the cache directory used by

Sprockets. The specific file it is trying to access is

23/03/2025, 01:45

Page 117 of 119

/home/loftwah/gits/dockerrails/pirate_app/tmp/cache/assets/sprockets/v4.0.0/2

K/2Kqqs5CDZKeqQ8Zi3OcRThACYBsE09CB_YbQaG96080.cache .

To resolve this issue, you need to ensure that the user running the Rails server has the

appropriate permissions to read and write to this directory. Here are the steps you can

take to fix this:

1. Check and Update Permissions:

Ensure that the tmp directory and its subdirectories have the correct permissions.

You can use the chmod command to set the correct permissions.

sudo chmod -R 755
/home/loftwah/gits/dockerrails/pirate_app/tmp

This sets the permissions to read, write, and execute for the owner, and read and

execute for group and others.

2. Change Ownership:

Ensure that the correct user owns the directory and its contents. Replace

username with the appropriate user (e.g., your current user or the user running

the Rails server).

sudo chown -R username:username
/home/loftwah/gits/dockerrails/pirate_app/tmp

3. Clear the Cache:

If the issue persists, you can try clearing the cache to ensure there are no

corrupted files causing the issue.

bundle exec rails tmp:cache:clear

After applying these changes, restart your Rails server and check if the issue is

resolved.

23/03/2025, 01:45

Page 118 of 119

Summary

This error is caused by a permissions issue with the cache directory used by Sprockets.

By updating the permissions and ensuring the correct ownership, you can resolve the

issue and allow your Rails server to access the necessary files.

23/03/2025, 01:45

Page 119 of 119

